: Jupyter H.W. 3 Mohammed Al Salem Last Checkpoint: 04/15/2022 (autosaved)

File

=

+

Eadit

View Insert

Cell

& @ B 4 ¥ PRun

Kemel

H C » Code v | =

Widgets Help

1ICS 104 Homework #3 (Due Saturday April 9, 2022 at midnight)

« Please note the following regarding homework submissions:
= No email submissions will be accepted under any circumstances.
» The deadline for all homework assignments will be at midnight
= The submission after the deadline will be opened for 6 hours (i.e. until 6:00am next morning) and submissions will be marked as Late. However, you
will not lose any marks because of that.
= After 8:00am, submission will be closed. Failure to submit before that time results in an automatic zero.

Instructions:

Solve Questions 1 and 2 in the respective cells below. Make sure you fill in any place that says YOUR CODE HERE .

* Make sure that your program output matches the sample runs in all Questions.

Also, make sure that you use the same strings in the print statements of all questions

« After you are done writing your code, save your jupyter notebook and close it. Then submit it from its folder to Blackboard

= Question 1
o Correct Code: 55 points.
o Programming style (comments and variable names): 5 points
= Question 2
o Correct Code: 30 points.
o Programming style (comments and variable names): 5 points
o Proper use of functions: 5 points.

Note:

The grade distribution is as follows:

+ You should write comments to help other programmers understand your code.
« Do not use magic numbers and define the constants value as a constant variable.
« Name your variables based on Variable Naming Conventions rules.

Question 1 (60 points)

@ | Logou

| Python 3 (ipykemel) O

Edit Metadata

Edit Metadata

‘Write a program that read a real blood donation database donations.txt that has been downloaded from Kaggle data science community website. The
donations.txt file contains blood donation on individuals who donate blood.This data is used by the hospital to communicate with doners, record their
donation and test result details.

DonorilD,DonoriAge,DonationfDate,Gender,BloodiGroup,
Donor_Weight, Donor_Hemoglobin,Donor_Blood Pressure
102493,38,2/22/2016,M,B-,80,13,120/80
122646,25,8/29/2016,M, A+, 60,13,120/80
131869,44,11/13/2016,M, A+, 80,13,120/80
137470,50,1/6/2017,M,B+,75,14,120/80
182717,21,5/8/2018,M, A, 65,14,120/80
126199,32,9/268/2016,M, A+, 85,13,120/80

First column is Donor D, and the remaining columns are Donor Age,Donation Date, Gender, Blood Group, Donor Weight, Donor Hemoglobin, and Donor

Blood Pressure. Your program needs to read all those data from the file and store it into a dictionary whose keys are Donor ID and whose values are a list of
donation details. This data is to be processed to produce an output file with the name donations_repert.txt . This file should format the donations as

follows:

Donor ID Donor Age Donation Date Gender Blood Group Donor Weight Donor Hemoglobin Donor Blood Pressure
102453 38 2/22/201€ M B- 80 13 120/80
122646 25 8/29/2016 M A+ 60 13 120/80
131869 44 11/13/2016 M A+ 80 13 120/80
170844 32 12/20/2017 M B+ 70 13 120/80
155622 30 7/13/2017 M A+ 70 13 120/80

##8§4#8488 Blood Donations statistics EEffffffif

Blood Type Number of donation
B- 40
a+ 105
B+ 116
- 121
o- 6
aB- i
RE+ S
o+]
gesssssess End of report $2sssss8es
Note:

* You must read all of the donation records before the report can be generated.
« Handles all exceptions when dealing with files.

Sample Run

Enter file name :

dona

tions. txt

Generating the Blood donations report donations_report.txt

##

#

inputFileName

asking the user for the input file name
input(“Enter file name: ")

Validating file name

1 if("donations.txt” in inputFileName):

11 print(“Generating the Blood donations report donations report.txt")

12 found = True

3 else:

14 inputFileName = input(~Invalid file extension. Please re-enter the input filename: ")

try:

found =
while not found

False

we open the file containing the data for reading and output file for writing
infile = open(inputFileName, 'r')

outfile = open(donations_report.txt”, "u')

Reading first Line that contains the 8 catigories

linel = infile.readline()

Split funtion will change each “,” into a list staring from index @ which is the ID to 7

firstline = linel.strip().split(”,")
to remove agll _ to spaces

Edit Metadata

This program reads and processes a collection of blood donations and prints the blood donations report
in the tabular format

for i in range(len(firstline)):
firstline[i] = firstline[i].replace(’_’
Writing file
outfile.write(("-"*125)+"\n")
outfile. write("{:<13} {:<13} {:<20} {:<13} {:<13} {:<13} {:<17} {:<17}\n".format(firstLine[@],firstline[1]\
,firstline[2],firstLine[3],firstLine[4],firstline[5],firstline[6],firstLine[7]))
outfile.write(("-"*125)+"\n")
data = dict()
to iterate the Lines
for lines in infile:
line = lines.strip().split(",")
outfile.write("{:<15} {:<15} {:<20} {:<15} {:<15} {:<15} {:<2@} {:<20}\n".format(line[@],1ine[1],1ine[2],1line[3]\
,line[4],1ine[5],1ine[6],1ine[7]))
the key is the ID
data[line[@]] = [line[1],1ine[2],1line[3],1ine[4],1ine[5],1ine[6],1ine[7]]

writing data analysis into file
outfile.write(\nit########4 Blood Donations statistics HH#HHHHEEN")
Now we define a function to get all the statistics of the input file
def countBlood(file):
#small a,b, and ab indicate -
#capital A,B, and AB indicate +
counta = @ ;countA = B; countb = @; countB = @; counto =8;count0=0;countab=8;countAB=0

for line in file:
data = line.split(",")

if data[4] == "B-"
countb
if data[4]
countB
data[4]
counta
if data[4]
countA
if data[4]
counto
if data[4]
countd
if data[4]
countAB
data[4]
countab += 1

"
-

e
-

return [str(counta),str(countA), str({countb), str(countB), str{counto),str(count0),str(countab),str(countiB)]
we reopen the file to start reading from the beggining again. ..
7 newReadFile = open(“donations.txt”, "r")
g = countBlood(newReadFile)

outfile.write(\nBlood Type Number of Donations\n")
outfile.write("B- %28s\n"%g[2])

outfile.urite(A+ %28s5\n"%g[1])

outfile.write("B+ %28s\n"%g[3])

outfile.urite("A- %28s5\n"% g[0])

outfile.write("0- %27s\n"%g[4])

outfile.write("AB- %265\n"%g[6])

outfile.write("AB+ %265\n"%g[7])

outfile.urite("0+ %27s\n"%g[5])

outfile.write(\nitt##HaHs End of report HEHHHHEE D)

except Exception as error:
print(error)

finally:
infile.close()
outfile.close()

Enter file name: donations.txt
Generating the Blood donations report donations report.txt

Edit Metadata

Question 2 (40 points)

In statistics, Pearson correlation coefficient is a measure of the linear correlation between two sets of data. Write a python program that calculates the
Pearson's correlation coefficient.

Given two sequences of numbers X = [Xq, X1. X2 ... X,—1] and ¥ = [Jo, ¥1. ¥2. ¥u—1], it can be defined mathematically as:
_ Y@ -2 w-1)
—\2 =\2
\/Z(wi —z)" > (v — 1)

T

where:

* nis sample size
® Xx;.y; are the individual sample points indexed with i.
n

- -
e x = Z x; (the sample mean); and analogously for y
=

The program should have the following user-defined functions.

+ \Write the main function that asks the user for file names that contain the two sequences of real values. The function call readInput and correlation
functions to read data from files and calculates the Pearson correlation coefficient.

« Write a function readData(filename) thattake as input a string representing a file name . The function opens the file (its name is given as a
parameter) and reads all values in the file into two lists . Then, the function returns the lists .If the reading is not successful, it prints an error
message and terminates

+ \Write a function correlation(listl, 1ist2) thatreceives two lists of real values, then it computes correlation between two values as defined by the
above formula

Note:

« Your functions must be general and not specific to the given example.
* ltis not allowed to use global variables and any external library to calculate the correlation
+ Handles all exceptions when dealing with files

Sample Run

s Sample input file: data.txt

205 305
246 207
174 273

* Sample Run#1 (datal.txt file does not exist)

Enter the input file name: data1.txt
Error reading data: the input file data1.txt is not found

« Sample Run#2

In [1]:

n []

Enter the input file name: data.txt
Pearsons correlation: -0.718

1 \##
2 # This program calculates the Pearson's correlation coefficient between two sets of data.
3 #
4 ##
5 # This program calculates the Pearson’s correlation coefficient between two sets of data.
6 #we import square root since we need it in the formula
7 from math import sqrt
8 def main():
9 try:
] inputFileName = input("Enter the name of the file: ")
firstlist, secondlist = readInput(inputFileName) # a function that give us two Lists
coeff = correlation(firstlist,secondlist)
print(“Pearsons correlation:%.3f" % coeff)
except IOError: #input error entered by the user
print(“Error reading data: the input file”, inputFileName,
readInput(file):
infile = open(file,"r")
listl = []
list2 = []
for line in infile:
datal,data2 = line.strip().split()
datal float(datal)
data2 = float(data2)
listl.append(datal) # to add the values at the end of the List
1list2.append(data2)
infile.close()
return 1istl,list2
correlation(listl,list2):
n = len(listl)
z = len(list2)
xtotal = 0
ytotal = @
for i in range(n):
xtotal = xtotal + listl[i]
xavg = (1/n) * xtotal
for j in range(z):
ytotal = list2[j] + ytotal
yavg=(1/n)*ytotal
rnewmonator = @
rdenominator =
xdenominator =
ydenominator =
for al in range(n):
rnewmonator = (listl[al] - xavg) *(list2[al] - yavg) + rnewmonator
xdenominator = ((list1[al] - xavg) **2) + xdenominator
ydenominator = ((list2[al] - yavg) **2) + ydenominator
rdenominator = sqrt(xdenominator*ydenominator)
finalAnswer = rneumonator/rdenominator # final answer = r
9 return finalAnswer

s not found")

oo

1 main()

Enter the name of the file: temp.txt
Pearsons correlation:-8.718

1 #NOTE: I got 95.5 in this HW 50 there could be better ways to solve this HW
2 # GOOD LUCK

