1. Explain the meaning of the following expressions:
a. f(n)isO(1).
b. f(n)isO(1).

c. f(n)isn®W,

1. (a) The function f never exceeds the value of a certain constant c.
(b) f is a constant function.

(c) The function f never exceeds the value of the power function n® for some constant c.

2. Assuming that f (n) is O(g,(n)) and f,(n) is O(g,(n)), prove the following statements:
a. f(n)+f£,(n)is O(max(g,(n).g,(n))).
b. Ifa number k can be determined such that for all n > k, g (n) < g,(n), then
O(g,(n)) + O(g,(n)) is O(g,(n)).
c. f(n)*f(n)isO(g (n)*g,(n)) (rule of product).
d. Ofcg(n)) is O(g(n)).
cis O(1).

2. In the following answers, these two definitions are used:
fi(n) is O(g1(n)) if there exist positive numbers ¢; and N such that fi(n) < e1g1 (n) for all n > Ny;
f2(n) is O(g2(n)) if there exist positive numbers ¢o and Nj such that fa(n) < c2g9(n) for all n > No;

(a) From the above definitions we have
fi(n) < ¢y - max(gi(n), g2(n)) for all n > max(Ny, Na),

fa(n) < ¢y - max(g (n), g2(n)) for all n > max(Ny, Na),
which implies that

fi(n) + f2(n) < (e1 + ¢2) - max(gy(n), g2(n)) for all n > max(Ny, Na).

Hence for ¢s = ¢1 + ¢o and N3 = max(N1, No), f1(n) + fa(n) < cg - max(g1(n) + g2(n)) for all
n > N, that is, fi(n) + fa(n) is O(max(g1(n), g2(n))).

(b) If gi(n) < ga(n), then for ¢ = max(cy,c2), cg1(n) < cgz2(n) and cgi(n) + cg2(n) < 2cga(n), which
implies that O(g1(n)) + O(g2(n)) is O(ga(n)).

(¢) The rule of product, f(n) - f2(n) is O(g1(n) - g2(n)) is true, since fi(n) - f2(n) < ere2g1(n) - g2(n)
for all n > max(Ny, Ny).

(d) O(eg(n)) is (O(g(n)) means that any function f which is O(eg) is also O(g). Function f is O(cg)
if there are two constants ¢; and N so that f(n) € ejeg(n) for all n < Nj; in this case, for a
constant ¢ = cic, f(n) < cyg(n); thus by choosing properly a constant ¢; (whose value depends
on the value of ¢ and ¢;), f is O(g).

(e) A constant ¢ is O(1) if there exist positive numbers ¢; and N such that c < ¢; -1 foralln > N;
that is, the constant function c is independent of n, and we can simply set ¢; = c.

3. Prove the following statements:

a. an_zl i is O(n*) and more generally, z"i=l i is O(n*+1).

b. an/lgnis O(n*) but an*/Ig n is not O(n*).
c. nt+nlgnis@(n't).

d. 2"is O(n!) and n! is not O(2").

e. 2"ais O(2").

f. 22" s not O(2").

g.

2Vien s O(n%).

3. (a) 31, i? is O(n?) if a constant can be found such that Y[, i* < en®; but 30 i2 < n-n? =n?,
thus ¢ = 1 for any n.

(b) Function an®/lgn is O(n*) if there is a ¢ and N for which an*/lgn < en* for all n > N. The
inequality becomes a/lgn < ¢ for N > 1, and since a/lgn — 0 we can put ¢ = a. But there is no
positive ¢ for which ¢ < a/lgn (it holds for ¢ = 0), thus an®/Ign is not ©(n*).

(¢) Function n'! 4 nlgn is ©(n!") if two constants can be found such that e;n'* < n'' + nlgn <
cynt !, These inequalities can be transformed into ¢; < 1+n7"!ign < c,; by the rule of L’Hospital,
n~—!.lgn = (Ign)/n' has the same limit as (Ige)/(.1-n') = (10 - Ige)/n'! which is 0. Hence,
ca =1,ca=1+10lge.

(d) 27 is O(n!) if there is 2 ¢ and N for which 2" < en! for all n > N. If N =1, then 2" < cn! implies

that 2" <¢(1-2-3...-n),ie, 2.2.2. .. 2<2=¢
For the other part of the exercise: n! is O(2") if there are constants ¢ and N such that n! < c2™
for n > N. The inequality n! < ¢2” implies 1-2-3...-n < ¢(2"),ie, s-2-3. .2 <, for all

n’s. But such a constant ¢ cannot be found.

(e) We can find such a c¢ that for some N and all n > N, oRtTe LoD if ¢ > ontefon = 99,

(f) We cannot find such a ¢ that for some N and all n > N,2"7¢ < €27, because there exists no
constant ¢ > 22"+2/2" = 2n — a.

(g) Because n = 2'8" then n® = 2°'8"; therefore, if 2alsn 5 2\/'8—", then n® > 2V%€", Now we
have to find such a c that for some N and all n > N,2\/IH < e, or oVign < 2087 e,
c> 2\/114_"/2‘“g " which is possible because the function 2\/'5_"/2“'5“ is decreasing.

4, Make the same assumptions as in Exercise 2 and, by finding counterexamples, refute
the following statements:

a. fi(n)—f(n)is O(g,(n) —g,(n)).
b. f(m)/f,(n) is O(g,(n)/g,(n)).

4. (a) Let fi(n) = ain, and fy(n) = agn; then both f; and f3 are O(n), but fi(n) — fa(n) = (a; — az)n
is not O(n — n) = 0(0). Hence, f1(n) — fo(n) is not O(g1(n) — g2(n)).
(b) Take the same functions as before; fi(n)/f2(n) = (a1/az)n is not O(n/n) = O(1). Therefore,
fi(n)/ fa(n) is not O(g1(n)/g2(n)).

5. Find functions f, and f, such that both f (n) and f,(n) are O(g(n)), but f (1) is not
O(f,).

5. For functions fi(n) = an® + O(n), f» = en+d, g(n) = n*, both fi(n) and fa(n) are O(g(n)), but f, is
not O(f2).

6. Isittrue that
a. if f(n)is ©(g(n)), then 2/ is @(28(")?

b. f(n)+ g(n) is ®(min(f(n).g(n)))?
c. 2misO(2")?

6. (a) It is not true that if f(n) is ©(g(n)) then 27(n] is @(29("), if, for example, f(n) = n, and
g(n) = 2n.

(b) f(n) + g(n) is not O(min(f(n), g(n))), if, for example, f(n) = n, and g(n) = 1,
(c) 2™ is not O(2"), because there is no constant ¢ > 27¢/2" = 2*(@~1) for any n and a > 1; for
a < 1 the function on(a=1) i decreasing so that a ¢ meeting the specified condition can be found.

7. The algorithm presented in this chapter for finding the length of the longest subarray
with the numbers in increasing order is inefficient, because there is no need to con-
tinue to search for another array if the length already found is greater than the length
of the subarray to be analyzed. Thus, if the entire array is already in order, we can
discontinue the search right away, converting the worst case into the best. The change
needed is in the outer loop, which now has one more test:

for (i = 0, length = 1: i < n-1 && length < n==i: i++)
What is the worst case now? Is the efficiency of the worst case still O(n?)?

7. If the line
for (i = 0, length

1: i < n-1; i++)
is replaced by the line
for (i = 0, length = 1; i < n-1 &% length < n-i; i++)

in the algorithm for finding the longest subarray with numbers in increasing order, then the best case,
when all numbers in the array are in decreasing order, remains O(n) since the inner loop is executed
just once for each of the n — 1 executions of the outer loop. For the ordered array, the outer loop is
executed just once and the inner loop n — 1 times, which makes it another best case.

But the algorithm is still O(n?). For example, if the array is [543 2112 3 4 5], ie., the first
half of the array is in descending order, then the outer loop executes 7/2 times and for each iteration
i=1,...,n/2, the inner loop iterates i times, which makes O(n?) iterations in total. This inefficiency is
due to the fact that the inner loop remembers only the length of the longest subarray, not. its position,
thereby checking subarrays of this subarray, e.g., after checking the subarray [5 4 3 2 1], it also checks
its subarrays [4 3 2 1], [3 2 1], etc. To improve the algorithm more and make it O(n), the inner loop
for (i1 = i2 = k = i; k < n-1 && al[k] < alk+1]; k++, i2+4);

should be changed to

for (i1 = i2 = k; k < n-1 && alk] < alk+1]; k++, i2++);

8. Find the complexity of the function used to find the kth smallest integer in an un-
ordered array of integers

int selectkth(int a[], int k, int n) {
int i, j, mini, tmp;
for (i = 0; i < k: i++) {
mini = i;
for (j = i+l; j < n; j++)
if (a[jl<a[mini])
mini = j;
tmp = a[i];
a[i] = a[mini];
a[mini] = tmp;
}

return af[k-1];

8. The complexity of selectkth()is (n— 1)+ (n—2)+ ..+ (n—k)=(2n -k - 1)k/2= O(n?).

9. Determine the complexity of the following implementations of the algorithms for
adding, multiplying, and transposing n x n matrices:

for (1 = 0; 1 < n; i++)
for (j = 0; j < n; j++)
afilfjl = b[i1[3] + c[i]1[]]:

for (1 = 0; 1 < n; i++)
for (j = 0; j < n; j++)

for (k = a[i][]j] = 0; k € n; k+t)

a[i][j1 += bli][k] * c[k]l[]1:

for (i =0; 1 < n - 1; i++)
for (j = i+l; j < n; j++) {
tmp = a[i][]];
afilfjl = arjiril:
afjlril tmp;

9. The algorithm for adding matrices requires n? assignments. Note that the counter i for the inner loop
does not depend on the counter j for the outer loop and both of them take values 0, ...,n — 1.
All three counters, i, j and k, in the algorithm for matrix multiplication are also independent of each

other, hence the complexity of the algorithms is nd.

. -2 -1 . »
To transpose a matrix, 3 iy 9. j—;41 3 = O(n*) assignments are required.

10. Find the computational complexity for the following four loops:

a. for (cntl =0, i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
cntl++;
b. for (cnt2 = 0, i = 1; i <= n; i++)
for (j =1; j <= 1i; j++)
cnt2++;
Ga for (cnt3 =0, i =1; i <= n; 1 *= 2)
for (j = 1; j <= n; j++)
cnt3++;
d. for (cntd = 0, i = 1; i <= n; i *= 2)
for (j =1; j <= i; j++)
cntd++;

10. (a) The autoincrement cnti++ is executed exactly n® times.
(b) 3=yt =0(n%);
(c) &7 i=0(nlgn).
() TET2' = O(n).

11. Find the average case complexity of sequential search in an array if the probability of
accessing the last cell equals 1, the probability of the next to last cell equals ., and the
TE . 2 . .. ; 4
probability of locating a number in any of the remaining cells is the same and equal

1

to 4(n — 2§

11 14...4(n—2) o=l 0o n—i+zi(n—1j+4n _ 7n-—3
+ T i(n=2) 1 2 = 8 -8

12. Consider a process of incrementing a binary n-bit counter. An increment causes some
bits to be flipped: Some 0s are changed to 1s, and some 1s to 0s. In the best case,
counting involves only one bit switch; for example, when 000 is changed to 001,
sometimes all the bits are changed, as when incrementing 011 to 100.

Number Flipped Bits

000

001 1
010 2
011 1
100 3
101 1
110 2
111 1

12. To prove the conjecture, the best thing to do is to devise an amortized cost that remains constant for
each increment step. For example,

amCost{increment(x)) = 2-(number of bits in z set to 1)

If the cost of setting one bit is one unit, then after setting a 1 bit there is one unit left for setting
this bit back to 0, therefore, there is no need to charge anything for setting bits to 0. Note that the
amortized cost for one increment is always 2.

Another definition is
amCost(increment(z)) = (number of flipped bits) + (number of 1s added to z).

The following table illustrates the application of this definition to increments of a 3-bit binary number.

number flipped bits added 1s amortized cost
000
001
010
011
100
101
110
111

S o]

—_ b GO b

1
0
1
-1
1
0
1

[R L L

