King Fahd University of Petroleum and Minerals ICS Department

ICS-202 Data Structures

Assignment 1 First Semester 2021-22

Stud	en	t II	C																						
Name	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#

ICS 202 – Data Structures and Algorithms First Semester 2021-22 (20211) SOLUTION to Assignment # 1 Due on Saturday, 25 September 2021, 11.59pm

Q. 1: [4 marks] By choosing appropriate values for c and N, show that f(n) is $O(n^2)$.

[Recall: f(n) is O(g(n)) if there exist positive numbers c and N such that $f(n) \le c \cdot g(n)$ for $n \ge N$]

$$f(n) = 4n^2 + 3n + 10$$

Solution:

Consider
$$g(n) = n^2$$
. Then $f(n)$ is $O(g(n))$ iff $f(n) \leq c \cdot g(n)$ for $n \geq N$

Therefore, let $f(n) \le c \cdot g(n)$ $4n^2 + 3n + 10 \le c \cdot n^2$ $c \ge 4 + 3/n + 10/n^2$ For N = 1, $c \ge +4 + 3/1 + 10/1^2$ Or $c \ge 17$.

Therefore for N = 1, $c \ge 17$, f(n) is O(g(n)).

Q. 2: [6 marks] Consider the following functions in terms of n (lg n is $log_2 n$):

$(4/3)^n$, n^3 , $(lg n)^2$, n!, $n \lg n$, 1.

- (a) Find the complexity class of each of these functions.
- (b) Order these functions from the most efficient to the least efficient in terms of their complexity classes.

You may fill in the following table:

Solution:

Function	O(Complexity)	Order					
1	O (1)	Most Efficient (Fastest)					
$(lg n)^2$	$O(lg \ ^2 n)$						
$n \lg n$	$O(n \lg n)$						
n^3	$O(n^{3})$						
$(4 / 3)^n$	$O((4 / 3)^n)$						
<i>n</i> !	O(<i>n</i> !)	Least Efficient (Slowest)					

Question 3 (10 + 10 + 20 = 40 marks): SOLUTION:

$$\begin{array}{l} Q.3[a] \\ \# of iterations \\ = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} (1) \\ = \sum_{i=0}^{n-1} (n-1-0+1) = \prod_{i=0}^{n-1} n \\ = \prod_{i=0}^{n-1} (n-1-0+1) = \prod_{i=0}^{n-1} n \\ = (n-1-0+1) \cdot (n) = n^2 : \text{ANSWER} \\ (b) \prod_{i=1}^{n-1} \sum_{i=2}^{n-1} (1) = (n-1-0+1)^3 \\ = n^3 \cdot \text{Complexity} = O(n^3) \\ (c) \prod_{i=0}^{n-2} \sum_{j=0}^{n-1} (3) = 3 \prod_{i=0}^{n-2} (n-1-i-1+1) \\ i=0 \\ = 3 \prod_{i=0}^{n-2} (n-i-1) \\ i=0 \\ = 3 \prod_{i=0}^{n-2} (n-2-0+1) - 3 (n-2)(n-1) \\ = 3n(n-1) - 3(n-2) - 3[n-1] \\ = (n-1) [3n - 3(n-2) - 3] \end{array}$$

Question 4 (10 + 10 + 15 + 15 = 50 marks):

SOLUTION

$$\begin{array}{l} Q.4(a) & n & n \\ \neq of & = \sum_{i=1}^{n} \sum_{j=1}^{n} (1) = (n-1+1)^{2} = n^{2} : \text{Answerk} \\ iterntons & i=1 & j=1 \\ \end{array}$$

$$\begin{array}{l} (b) & \sum_{i=1}^{n} \sum_{j=1}^{i} (1) = \sum_{i=1}^{n} (i-1+1) = \sum_{i=1}^{n} \frac{1}{2} \\ = & n(n+1) \\ 2 \\ \end{array}$$

$$\begin{array}{l} (c) - (d) & \text{are multiplicative loops.} \\ For & \text{Hase} & (for the outer-loop) \\ 1 = 1, 2, 4, 8, \dots, 2^{K} \\ \end{array}$$

$$\begin{array}{l} (where & n=2^{K} \end{bmatrix} \\ \begin{array}{l} \text{Consider a variable } (r) \\ i = n(n+1) \\ 2 \\ \end{array}$$

$$\begin{array}{l} (c) - (d) & \text{are multiplicative loops.} \\ For & \text{Hase} & (for the outer-loop) \\ 1 = 1, 2, 4, 8, \dots, 2^{K} \\ \end{array}$$

$$\begin{array}{l} (where & n=2^{K} \end{bmatrix} \\ \begin{array}{l} \text{Consider a variable } (r) \\ i = n(n+1) \\ i = n(n+1) \\ \end{array}$$

$$\begin{array}{l} (c) - (d) \\ reo \\ i = 1, 2, 4, 8, \dots, 2^{K} \\ \end{array}$$

$$\begin{array}{l} (c) - (d) \\ reo \\ i = 1, 2, 4, 8, \dots, 2^{K} \\ \end{array}$$

$$\begin{array}{l} (c) - (d) \\ reo \\ i = 1, 2, 4, 8, \dots, 2^{K} \\ \end{array}$$

$$\begin{array}{l} (c) - (d) \\ reo \\ i = 1, 2, 4, 8, \dots, 2^{K} \\ \end{array}$$

$$\begin{array}{l} (c) - (d) \\ reo \\ i = 1, 2, 4, 8, \dots, 2^{K} \\ \end{array}$$

$$\begin{array}{l} (c) - (d) \\ reo \\ reo \\ i = 1, 2, 4, 8, \dots, 2^{K} \\ \end{array}$$

$$\begin{array}{l} (c) - (d) \\ reo \\ reo \\ reo \\ i = 1, 2, 4, \dots, 2^{K} \\ \end{array}$$

$$\begin{array}{l} (c) - (d) \\ reo \\ reo \\ \end{array}$$

END OF ASSIGNMENT