
King Fahd University of Petroleum and Minerals

ICS Department

ICS-202 Data Structures

Assignment 2

First Semester 2021-22

Student ID

Name #

ICS 202 – Data Structures and Algorithms

First Semester 2021-22 (20211)

SOLUTION to Assignment # 2

Due on Saturday, 16 October 2021, 11.59pm

	

Submissions Guidelines

• Include a screenshot of a sample run of your programs.
• For each question, submit all java classes as one java file with your name

and ID as a comment in the first two lines.
• The java file name must be the same as the main class name, both have the

following format (ID#_Q#), where ID# will be your ID and Q# will be the
question number. For example: s201706981_Q1, s201706981_Q2.

• Compress both java files along with the screenshots in one .rar file renamed
as your ID.

• The input and the output of the program will be from & to files.
• For the input file:

o The program will take the file name as an argument (args [0]).
• For the output file:

o The program will take the output file name as an argument (args [1]).
• You are free to explore the input and output methods as you develop the

solution to the assignment; but before the submission, you have to prepare
all the programs to take the input from a file in (args [0]) and print the
output to the file in (args [1]).

• Attached to this assignment are sample input and output files for each
question. Those files have the same format as the files that your program
will be tested through. So, please adhere to the format in those files, and
make sure that your code can read and write the data given in that
format.

• Submit the .rar file through Blackboard.
• Only submissions that follow the above guidelines will be evaluated. 	

Question 1 (20 + 20 + 20 = 60 Marks)

Add the following methods to the class SLL<T>:

1. public void insertBefore(T newElem, T existingElem) 	
2. public void insertAfter(T newElem, T existingElem)	
3. public void deleteBefore(T existingElem)	

Below is shown the way the first one works, and the other two methods will follow the
same methodology.

public void insertBefore(T newElem, T existingElem)

Inserts an element newElem before the element existingElem. If no existingElem
exists, then the method prints -1 and returns. If more than one instance of exisingElem
exists, then the methods inserts before the first instance of existingElem.
For example, suppose your linked list (of integers) is: [3 5 4 2 9],
Then a call to insertBefore(new Integer(5), new Integer(9)) would result in the
following linked list: [3 5 4 2 5 9]
A call to insertBefore(new Integer(7), new Integer(5)) would result in [3 7 5 4 2 5 9]
A call to insertBefore(new Integer(8), new Integer(10)) would result in -1

Sample Input	 Sample Output	
1	2	3	4	5	
5	
ia	2	1	
ib	2	1	
db	3	
db	1	
ia	1	7	

1	2	2	3	4	5	
2	1	2	2	3	4	5	
2	1	2	3	4	5	
1	2	3	4	5	
-1	

	

As it is shown in the sample input, the first line will have the list of integers that you will
work with.
The second line will have an integer N, indicating the number of following lines where
each line will have a command as shown.

- ia 2 1 stands for insertAfter (2,1)
- ib 2 1 stands for insertBefore (2,1)
- db stands for deleteBefore (1)

	 public	void	insertBefore(T	newElem,	T	existingElem)	{	
	 	 if(!isInList(existingElem))	{	System.out.println("-1");	return;}	
	 	 else	if	(existingElem.equals(head.info))	addToHead(newElem);	
	 	 	
	 	 else	{	
	 	 SLLNode<T>	tmp	=	head;	
	 	 while	(tmp.next	!=	null)	{	
	 	 	 if	(tmp.next.info.equals(existingElem))	{	
	 	 	 	 SLLNode<T>	nextNode	=	new	SLLNode<T>(newElem);	
	 	 	 	 nextNode.next	=	tmp.next;	
	 	 	 	 tmp.next	=	nextNode;	
	 	 	 	 break;	
	 	 	 }	
	
	 	 	 tmp	=	tmp.next;	
	 	 }}}	
	
	 	
	 public	void	insertAfter(T	newElem,	T	existingElem)	{	
	 	 if(!isInList(existingElem))	{	System.out.println("-1");	return;}	
	 	 	
	 	 else	{	
	 	 SLLNode<T>	tmp	=	head;	
	 	 while	(tmp!=	null)	{	
	 	 	 if	(tmp.info.equals(existingElem))	{	
	 	 	 	 SLLNode<T>	nextNode	=	new	SLLNode<T>(newElem);	
	 	 	 	 nextNode.next	=	tmp.next;	
	 	 	 	 tmp.next	=	nextNode;	
	 	 	 	 break;	
	 	 	 }	
	
	 	 	 tmp	=	tmp.next;	
	 	 }}}	
	
	 	
	 	

public	void	deleteBefore(T	existingElem)	{	
	 	
	 if(!isInList(existingElem))	{	System.out.println("-1");	return;}	
	 	 else	if	(existingElem.equals(head.next.info))	deleteFromHead();	
	 	 				else	if	(existingElem.equals(head.info))	System.out.println("nothig	before	head.");	
	
	 	 	 else	{	
	 	 	 SLLNode<T>	tmp	=	head;	
	 	 	 while	(tmp.next.next	!=	null)	{	
	 	 	 	 if	(tmp.next.next.info.equals(existingElem))	{	
	 	 	 	 	 SLLNode<T>	toDelete	=	new	SLLNode<T>();	
	 	 	 	 	 toDelete	=	tmp.next;	
	 	 	 	 	 tmp.next	=	toDelete.next;	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 break;	
	 	 	 	 }	
	
	 	 	 	 tmp	=	tmp.next;	
	 	 	 }}	
	
	 	

Question 2 (20 + 20 = 40 Marks)

You are asked to take as input a list of integers that went through several reverse
operations, and your task is to retrieve the original list, you may use java.util.Stack and
java.util.LinkedList as helpers.

The operations were as follows:

• Select each subpart of the list that contain even integers only.
For example, if the list was {5,20,8,7,12,18}, then the selected subparts will
be {20,8}, {12,18}.

• Reverse the selected subpart such as {8,20} and {18,12}.

The output should be the original list.

Sample Input	 Sample Output	
9	
2	18	24	3	5	7	9	6	12	

24	18	2	3	5	7	9	12	6	

As it is shown in the input sample, the first line will have an integer indicating the
number of the elements in the list followed by the second line which has the list of items.

In the sample input, 9 represents the number of items in the list.
As you can see, the subparts that contains only even integers in the given list are
{2,18,24} and {6,12}. The corresponding output (which is the original list) is shown in
the sample output section.

public	static	void	main(String[]	args)	throws	FileNotFoundException	{	
	 	 	 	
	 									LinkedList<Integer>	LL	=	new	LinkedList<Integer>();	
	 									Stack<Integer>	st	=	new	Stack<Integer>();	
	 									File	file	=	new	File(args[0]);	
	 									Scanner	sc1	=	new	Scanner(file);	
	 									int	count=sc1.nextInt();	
	 																
	

	 									for(int	i=0;i<count;i++){	 							
	 													int	t=sc1.nextInt();	
	 													LL.add(t);						}	
	 									int	tmp1=0,tmp2=0;	
	 									while(tmp1!=LL.size()	&&	tmp2!=LL.size()){	
	 													if(LL.get(tmp2)%2==0)							{	
	 																	st.push(LL.get(tmp2));	
	 																	++tmp2;									}	
	 													else	{	
	 																					while(tmp1<tmp2){	
	 																					LL.set(tmp1,st.pop());	
	 																					tmp1++;															}	
	 																	tmp1++;	
	 																	tmp2++;					}								}	
	 									if(!st.empty())	{	
	 												while(tmp1<tmp2){	
	 																	LL.set(tmp1,st.pop());	
	 																	tmp1++;											}									}	
	 										
	 								String	output="";	
	 								for(int	i=0;i<LL.size();i++)	{	
	 								 output+=LL.get(i)+"	";								}	
	 									try	{	
	 													File	myObj	=	new	File(args[1]);	
	 													if	(myObj.createNewFile())	{	
	 																	System.out.println("File	created:	"	+	myObj.getName());	
	 																	FileWriter	myWriter	=	new	FileWriter(args[1]);	
	 																	myWriter.write(output);	
	 																
	 																	myWriter.close();	
	 													}	else	{	
	 																	System.out.println("File	already	exists.");	
	 													}	
	 									}	catch	(IOException	e)	{	
	 													System.out.println("An	error	occurred.");	
	 									}	

