

ICS 202 Lab Project (Sections 51, 52, 53, and 55) – Term 202
Guidelines:

1. This is a strictly individual project. No collaboration is allowed.
2. Due date for the project is 26th April 2021 at 23:59.
3. You also need to include a report which should have the following:
title page with (a) project name, (b) your name and ID.
listing of all source code of the project in readable format (Consolas font size 10 is preferred)
output screen shots of the project.
4. Submit the report and the java files in a zip file named in the format:
 LabSectionNumber_LabProject_KFUPMID#_FamilyName
 Example:
 53_LabProject_201700000_AlHarthi

 Note: Please do not attach any characters to the section number
Implement the following data structure that stores city objects according to city sub-lists:
· Each sub-list is an instance of the given SLL<T> class
· The main list (MSLL<T>) is a modified SLL whose nodes have the following fields:
· info field of generic type T
· list field of type SLL<T>
· next of type MSLL<T>
[image:]
 A city object has the fields:
· cityName 	 of type String
· decimalLatitude of type double
· decimalLongitude of type double

It also has appropriate methods (that you are required to provide)

Note: Each citySublist contains the city objects whose names start with the string in the info field of the corresponding MSLL node field.

(a) Implement the City class
(b) Implement the MSLL node class
(c) Implement the SLL node class
(d) Implement each of the following methods of SLL or MSLL (Note you are required to determine which method is appropriate for the two types of lists) :
· public void addCityToSublistAtRear
 Adds a city object at the end of a sublist. Throws exception if city exists in sublist.
· public void addToCitySublistList(T e1, int position)
 Adds a city object at a given position of a city sublist. Throws exception if city exists in sublist
 or if position is not valid
· public boolean cityIsInSubList(T e1)
 Returns true if city object is in sublist, otherwise it returns false.
· public void deleteCityFromSublist(T e1)
 Deletes city object if present in sublist; otherwise it throws an exception it is not present.
· public void deleteCitySublist(String str)
 Deletes the MSSL node with str as key. Throws an exception if such a node does not exist.
· public void makeCitySublistEmpty(String str)
 Makes the city sublist of the MSSL node with str as key empty. Throws an exception if such a node
 does not exist.
· public void displayCitySublist(T e1)
 Displays all city objects in the city sublist corresponding to MSLL node with key e1.
 Throws an exception if such a node does not exist.
· public void addToMSLLHead(T el)
 Adds a new node with key e1 at the beginning of the MSLL list if a node with this key does
 not exist; otherwise, it throws an exception.
· public void addToMSLLTail(T el)
 Adds a new node with key e1 at the end of the MSLL list if a node with this key does not
 exist; otherwise, it throws an exception.
· public void deleteFromMSLL(T el)		
 Delete the MSSL node with key e1 if it exists. Throws an exception if MSLL is empty or if
 Node with key e1 does not exist.
· public boolean isInMSLList(T el)
 Returns true if MSLL has a node with ket e1; otherwise, it returns false.
· public double getDistance(String city1, String city2)
 Calculates the straight-line distance between city1 and city2 using Haversine formula.
 Throws an exception if any of the two cities does not exist.

Harvesine formula:
[image:]
Where:
· distance is the straight-line distance in kilometers between the two points along a great circle of the earth sphere,
· r is the radius of the earth sphere = 6372.8 kilometers.
· φ1, φ2 are the latitude of point 1 and latitude of point 2 (in radians),
· λ1, λ2 are the longitude of point 1 and longitude of point 2 (in radians).

Note: Write a test class to test the methods of SLL and MSLL. The test program must be menu driven with the following menu options:
1. AddCityToSublistAtRear
2. AddCityToSublistAtPosition
3. SearchForCity
4. DeleteCityFromCitySublist
5. DeleteCitySublist
6. MakeCitySublistEmpty
7. DisplayCitySublist
8. addToMSSLAtHead
9. AddToMSSLAtTail
10. DeleteFromMSSL
11. SearchMSLList
12. getDistance
13. Exit

Your program must:
· Throw an exception for any wrong menu choice.
· Loop and display the menu again as long as the choice is not 14.
· Provide appropriate behavior for each option.
Sample program run, when the getDistance option is selected and both Dhahran and Mecca are present in the data structure:

Enter the name of city1: Dhahran
Enter the name of city2: Mecca
The straight-line distance between Dhahran and Mecca is 1181.76 kilometers

Sample program run, when the AddCityToSublistAtPosition option is selected and the entered city object is not in the corresponding sublist and position is valid:

Enter the city name: Amman
Enter the city latitude in decimal degrees: 31.9539
Enter the city longitude in decimal degrees: 35.9106
Enter the insertion position: 1

Some cities and their decimal latitudes and longitudes:
	City
	latitude
	longitude

	Abha			
	18.2167
	42.5

	Amman
	31.9539
	35.9106

	Arar		
	30.9833
	41.0167

	Amsterdam
	52.3676
	4.9041

	Arusha
	-3.3869
	36.6830

	Dhahran
	26.2361
	50.0393

	Dammam
	26.4333
	50.1000

	Delhi
	28.7041
	77.1025

	Dubai
	25.2048
	55.2708

	Edinburgh
	55.9533
	-3.1883

	Entebbe
	0.0512
	32.4637

	Gaborone
	-24.6282
	25.9231

	Genoa
	44.4056
	8.9463

	Glasgow
	55.8642
	-4.2518

	Riyadh		
	24.6500
	46.7100

	Rome
	41.9028
	12.4964

	Rotterdam
	51.9244
	4.4777

	ReoDeJaneiro
	-22.9068
	-43.1729

	Jeddah		
	21.5428
	39.1728

	Jizan
	16.8894
	42.5706

	Jakarta
	-6.2088
	106.8456

	Jubail
	26.9598
	49.5687

	Jalalabad
	34.4284
	70.4578

	Johannesburg
	-26.2041
	28.0473

	Khobar
	26.2172
	50.1971

	Kabul
	33.9391
	67.7100

	Karachi
	24.8607
	67.0011

	Khartoum
	15.5007
	32.5599

	Mecca		
	21.4225
	39.8262

	Medina
	24.4667
	39.6000

	Madrid
	40.4168
	-3.7038

	Manama
	26.2235
	50.5876

Page 2 of 2

image1.png

image2.png
distance = 27 arcsin <\/sin2 (Lpz ; #1) + cos(p1) cos(ips) sin® <)\2 ; s >>

