
ICS 233: Computer Architecture & Assembly Language

Fall Semester 2021 (211) – Section 01

Name: ID#

1. Fill in the blanks:

a. The processor consists of two main units: _Datapath_ and _Control Unit_.

b. Assemblers translates _Assembly instructions _ to _machine instructions/object

files_.

c. _Debugger_ allows you to trace the execution of your assembly code and set

breakpoints.

d. Pentium has a 32-bit address bus so its maximum physical address space it _232

= 4G_ Bytes.

e. Cache memory is faster than _main memory/disk_ but slower than _registers_.

2. Given the following data definitions, fill the data segment with byte values (as

characters or hexadecimal numbers) using the Big-Endian byte ordering. Show also

the mapping of the labels to their corresponding memory addresses in the symbol

table, given that the starting address of var1 is 0x10010000 (hexadecimal).

.data

var1: .ascii "ICS233\n"

var2: .half 0xabcd:2

var3: .space 5

.align 3

var4: .word 0x01234567

Data Segment (Fill-in the bytes)

Byte 0 1 2 3 4 5 6 7 8 9 A B C D E F

0x10010000 ‘I’ ‘C’ ‘S’ ‘2’ ‘3’ ‘3’ ‘\n’ 0xab 0xcd 0xab 0xcd

0x10010010 0x01 0x23 0x45 0x67

0x10010020

Label Address

var1 0x10010000

var2 0x10010008

var3 0x1001000C

var4 0x10010018

ICS 233: Computer Architecture & Assembly Language

Fall Semester 2021 (211) – Section 02

Name: ID#

1. Fill in the blanks:

a. The processor consists of two main units: _Datapath_ and _Control Unit_.

b. Assembly language instructions has a one-to-one correspondence with

machine instructions.

c. _linker_ Combines object files created by the assembler with link libraries to

generate a single executable file.

d. MIPS has _32_ (how many?) general purpose registers. Each register is _32_-

bit wide.

e. Cache memory is bigger than _registers_ but smaller than _main

memory/Disk_.

2. Given the following data definitions, fill the data segment with byte values (as

characters or hexadecimal numbers) using the little-Endian byte ordering. Show also

the mapping of the labels to their corresponding memory addresses in the symbol

table, given that the starting address of var1 is 0x10010000 (hexadecimal).

.data

var1: .byte 'I','C','S'

var2: .word 0x12345678:2

var3: .asciiz "Text"

.align 3

var4: .half 0xabcd

Data Segment (Fill-in the bytes)

Byte 0 1 2 3 4 5 6 7 8 9 A B C D E F

0x10010000 ‘I’ ‘C’ ‘S’ 0x78 0x56 0x34 0x12 0x78 0x56 0x34 0x12 ‘T’ ‘e’ ‘x’ ‘t’

0x10010010 ‘\0’ 0xcd 0xab

0x10010020

Label Address

var1 0x10010000

var2 0x10010004

var3 0x1001000C

var4 0x10010018

