
ICS 233: Computer Architecture & Assembly Language
Fall Semester 2021 (211) – Section 01

Quiz 2
Name: ID#

Q1. (4 points) Below is a MIPS assembly code. For each instruction, determine the register

that is modified, and its new value (in hexadecimal). Indicate if any instruction causes

an exception. Assume the initial values stored in $t0 = 0xFFFF_FFF0, $t1 =

0x0123_4567, $t2 = 0x0000_0006, $t3 = $t4 = 0x0000 0000,

and $t5 = $t6 = 0xFFFF_FFFF initially.

Code Reg. New Value

addi $t3, $t2, -8 $t3 0xFFFF FFFE (-2)

subu $t4, $t2, $t0 $t4 0x0000 0016 (22)

and $t5, $t0, $t1 $t5 0x0123 4560

sll $t6, $t1, 1 $t6 0x0246 8ACE

Q2. (4 points) Translate the following high-level language expression into the shortest

sequence of assembly language instructions:

a. $t0 = 28 * $t1 (you cannot use multiplication instructions)

28*$t1 = (16 + 8 + 4) *$t1

sll $t2, $t1, 4 # 16*$t1

sll $t3, $t1, 3 # 8*$t1

sll $t4, $t1, 2 # 4*$t1

addu $t0, $t2, $t3 # 24 * $t1

addu $t0, $t0, $t4 # 28 * $t1

28*$t1 = (32 – 4) *$t1

sll $t2, $t1, 5 # 32*$t1

sll $t3, $t1, 2 # 4*$t1

subu $t0, $t3, $t2 # 28 *

$t1

b. $t2 = -$t3

subu $t2, $zero, $t3

Q3. (2 points) Rewrite a pseudo-instruction (even $t0, $t1) that sets $t0 to 1 if $t1 is

even number and resets it to 0 otherwise. You may use ONLY the $at register as a

temporary register for intermediate results.

ori $t0, $zero, 1

nor $t0, $t0, $t0

nor $t0, $t0, $t1

andi $t0, $t1, 1

xori $t0, $t0, 1

sll $t0,$t1,31

srl $t0,$t0,31

xori $t0, $t0, 1

ICS 233: Computer Architecture & Assembly Language
Fall Semester 2021 (211) – Section 02

Quiz 2
Name: ID#

Q1. (4 points) Below is a MIPS assembly code. For each instruction, determine the register

that is modified, and its new value (in hexadecimal). Indicate if any instruction causes an

exception. Assume the initial values stored in $t0 = 0xFFFF_FFF0, $t1 =

0x8765_4321, $t2 = 0x0000_0006, $t3 = $t4 = 0x0000 0000,

and $t5 = $t6 = 0xFFFF_FFFF initially.

Code Reg. New Value

addi $t3, $t0, 20 $t3 0x0000 0004 (4)

subu $t4, $t0, $t2 $t4 0xFFFF FFEA (-22)

nor $t5, $t0, $t1 $t5 0x0000 000E

sra $t6, $t1, 1 $t6 0xC3B2 A190

Q2. (4 points) Translate the following high-level language expression into the shortest

sequence of assembly language instructions:

a. $t0 = 56 * $t1 (you cannot use multiplication instructions)

56*$t1 = (32 + 16 + 8) *$t1

sll $t2, $t1, 5 # 32*$t1

sll $t3, $t1, 4 # 16*$t1

sll $t4, $t1, 3 # 8*$t1

addu $t0, $t2, $t3 # 48 * $t1

addu $t0, $t0, $t4 # 56 * $t1

56*$t1 = (64 – 8) *$t1

sll $t2, $t1, 6 # 64*$t1

sll $t3, $t1, 3 # 8*$t1

subu $t0, $t3, $t2 # 56 *

$t1

b. $t2 = NOT $t3

nor $t2, $t3, $t3

or

nor $t2, $t3, $zero

(2 points) Rewrite a pseudo-instruction (odd $t0, $t1) that sets $t0 to 1 if $t1 is odd and

resets it to 0 otherwise. You may use ONLY the $at register as a temporary register for

intermediate results.

andi $t0, $t1, 1

