1. List the ordered pairs in the relation R from
A=10,1,2,3,4}to B=1{0,1,2,3}, where (a.b) € R
if and only if

a) a=ah. b) a+bh=4.
c) a=bh. d) al|b.
e) gedia, b) = 1. f) lemia, b) = 2.

1. In each case, we need to find all the pairs (a.b) with @ € A and b € B such that the condition is satisfied.
This is straightforward.
a) {(0,0),(1.1),(2,2),(3,3)} b) {(1,3).(2.2).(3,1),(4,0)}
c) {(1,0),(2,0),(2,1),(3,0).(3,1).(3,2),(4,0), (4,1),(4,2),(4,3)}
d) Recall that a|b means that b is a multiple of a (a is not allowed to be 0). Thus the answer is
{(1.0),(1,1).(1,2),(1,3),(2,0),(2.2), (3,0),(3.3), (4,0)} .
e) We need to look for pairs whose greatest common divisor is 1-—in other words, pairs that are relatively
prime. Thus the answer is {(U 1),(1,0),(1,1),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2), (4, 1), (4, 3)}
f) There are not very many pairs of numbers (by definition only positive integers are considered) whose least
common multiple is 2: only 1 and 2, and 2 and 2. Thus the answer is {(1,2),(2,1),(2,2)}.

2, a) List all the ordered pairs in the relation

R = {(a, b) | a divides b} on the set {1, 2, 3,4, 5, 6}.

b) Display this relation graphically, as was done in
Example 4.

¢) Display this relation in tabular form, as was done in
Example 4.

2. a) (1,1), (1,2), (1,3), (1,4), (1,5). (1,6), (2,2), (2,4), (2,6), (3,3), (3,6). (4,4), (5,5), (6,6)
b) We draw a line from a to b whenever a divides b, using separate sets of points; an alternate form of this
graph would have just one set of points.
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c) We put an x in the i** row and j** column if and only if i divides j.
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3. For each of these relations on the set {1, 2, 3, 4}, decide
whether it is reflexive, whether it is symmetric, whether
it is antisymmetric, and whether it is transitive.

(2,2),(2,3),(2,4).(3,2),(3,3), (3, 4)}

(1,1),(1,2), (2, 1).(2,2), (3. 3), (4, 4)}

(2,4),(4,2)}

(1,2),(2,3), (3,4}

(1,1),(2,2).(3,3). (4. 4)}

(1,3),(1,4),(2,3),(2,4), (3. 1), 3, 4)}

a)
h)
c)
d)
e)
f)

—— e, e, e,

3. a) This relation is not reflexive, since it does not include, for instance (1,1). It is not symmetric, since it
includes, for instance, (2,4) but not (4,2). It is not antisymmetric since it includes both (2,3) and (3,2),
but 2 # 3. It is transitive. To see this we have to check that whenever it includes (a,b) and (b,c), then it

also includes (a,c). We can ignore the element 1 since it never appears. If (a,b) is in this relation, then by
inspection we see that a must be either 2 or 3. But (2,¢) and (3,¢) are in the relation for all ¢ # 1; thus
(@, ¢) has to be in this relation whenever (a,b) and (b, ¢) are. This proves that the relation is transitive. Note
that it is very tedious to prove transitivity for an arbitrary list of ordered pairs.

b) This relation is reflexive, since all the pairs (1,1}, (2,2), (3,3), and (4,4) are in it. It is clearly symmetric,
the only nontrivial case to note being that both (1.2) and (2,1) are in the relation. It is not antisymmetric
because both (1,2) and (2,1} are in the relation. It is transitive; the only nontrivial cases to note are that
since both (1,2) and (2,1) are in the relation, we need to have (and do have) both (1,1) and (2,2) included
as well.

¢) This relation clearly is not reflexive and clearly is symmetric. It is not antisymmetric since both (2,4} and
(4,2) are in the relation. It is not transitive, since although (2,4) and (4,2) are in the relation, (2,2) is not.
d) This relation is clearly not reflexive. It is not symmetrie, since, for instance, (1,2) is included but (2,1)
is not. It is antisymmetric, since there are no cases of (a,b) and (b, a) both being in the relation. It is not
transitive, since although (1,2) and (2,3) are in the relation, (1,3) is not.

e) This relation is clearly reflexive and symmetric. It is trivially antisymmetric since there are no pairs (a, b)
in the relation with a # b. It is trivially transitive, since the only time the hypothesis (a,b) € R A (b,c) € R
is met is when a =b=c.

f) This relation is clearly not reflexive. The presence of (1,4) and absence of (4,1) shows that it is not
symmetric. The presence of both (1,3) and (3,1) shows that it is not antisymmetric. It is not transitive;
both (2,3) and (3,1) are in the relation, but (2,1) is not, for instance.



4. Determine whether the relation R on the set of all people
is reflexive, symmetric, antisymmetric, and/or transitive,
where (@, b) € R if and only if
a) a is taller than b.

b) @ and b were born on the same day.
¢) a has the same first name as b.
d) @ and b have a common grandparent.

4. a) Being taller than is not reflexive (I am not taller than myself), nor symmetric (I am taller than my daughter,
but she is not taller than I). It is antisvmmetric {vacuously, since we never have A taller than B, and B taller
than A, even if A = B). It is clearly transitive.

b) This is clearly reflexive, symmetric, and transitive (it is an equivalence relation—see Section 9.5). It is not
antisymmetric, since twins, for example, are unequal people born on the same day.

¢) This has exactly the same answers as part (b), since having the same first name is just like having the
same birthday.

d) This is clearly reflexive and symmetric. It is not antisymmetric, since my cousin and 1 have a common
grandparent, and I and my cousin have a common grandparent, but I am not equal to my cousin. This relation
is not transitive. My cousin and I have a common grandparent; my cousin and her cousin on the other side of
her family have a common grandparent. My cousin’s cousin and 1 do not have a common grandparent.
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5. Determine whether the relation R on the set of all Web
pages is reflexive, symmetric, antisymmetric, and/or tran-
sitive, where (a, b) € R if and only if
a) everyone who has visited Web page a has also visited
Web page b.

b} there are no common links found on both Web
page a and Web page b.

¢) there is at least one common link on Web page a and
Web page b.

d) there is a Web page that includes links to both Web

page a and Web page b.

5. Recall the definitions: R is reflexive if (a,a) € R for all a; R is symmetric if (e,b) € R always implies
(b,a) € R; R is antisymmetric if (a,b) € R and (b,a) € R always implies @ = b; and R is transitive if
(a,b) € R and {b,c) € R always implies {(a,¢) € R.

a) It is tautological that everyone who has visited Web page a has also visited Web page a, so B is reflexive.
It is not symmetric, because there surely are Web pages a and b such that the set of people who visited o is
a proper subset of the set of people who visited b (for example, the only link to page a may be on page b).
Whether R is antisymmetric in truth is hard to say, but it is certainly conceivable that there are two different
Web pages a and & that have had exactly the same set of visitors. In this case, (a,b) € B and (h,a) € R,
so R is not antisymmetric. Finally, R is transitive: if evervone who has visited a has also visited b, and
everyone who has visited b has also visited ¢, then clearly everyone who has visited a has also visited c.

b) This relation is not reflexive, because for any page a that has links on it, (a,a) ¢ R. The definition
of B is symmetric in its very statement, so B is clearly symmetric. Also R is certainly not antisymmetric,
because there surely are two different Web pages @ and b out there that have no common links found on
them. Finally, R is not transitive, because the two Web pages just mentioned, assuming they have links at
all, give an example of the failure of the definition: (a,b) € R and (b,a) € R, but (a.a) ¢ A.

c) This relation is not reflexive, because for any page a that has no links on it, (a,a) ¢ R. The definition
of R is symmetric in its very statement, so R is clearly symmetric. Also R is certainly not antisymmetric,
because there surely are two different Web pages a and b out there that have a common link found on them.
Finally, R is surely not transitive. Page a might have only one link (say to this textbook), page ¢ might have
only one link different from this (say to the Erdés Number Project), and page 6 may have only the two links
mentioned in this sentence. Then (a,b) € R and (b,c) € R, but (a,c) € R.

d) This relation is probably not reflexive, because there probably exist Web pages out there with no links at
all to them {for example, when they are in the process of being written and tested); for any such page a we
have (a,a) ¢ R. The definition of K is symmetric in its very statement, so R is clearly symmetric. Also R
is certainly not antisymmetric, because there surely are two different Web pages a and b out there that are
referenced by some third page. Finally, R' is surely not transitive. Page a might have only one page that links

to it. page ¢ might also have only one page, different from this, that links to it, and page b may be cited on
both of these two pages. Then there would be no page that includes links to both pages a and ¢, so we have
{a,b) € R and (b,¢) € R, but (a,c) ¢ R.



6. Determine whether the relation R on the set of all real
numbers is reflexive, symmetric, antisymmetric, and/or
transitive, where (x, ¥) € R if and only if

a) x+y=0. b) x = *£y.
¢) x — ¥ is arational number.

d) x =2y. e) xy = 0.
f) xy=10. gl x = 1.

h) x=1lory=1.

6. a) Since 1+ 1 # 0, this relation is not reflexive. Since  + y = vy + =, it follows that =z +y = 0 if and
only if ¥ + 2 = 0, so the relation is symmetric. Since (1, —1) and (—1,1) are both in R, the relation is not
antisymmetric. The relation is not transitive; for example, (1,—1) € R and (—1,1) € R, but (1.1) ¢ R.

b) Since » = +2 (choosing the plus sign), the relation is reflexive. Since » = %y if and only if ¥ = £,
the relation is symmetric. Since (1,—1) and (—1,1) are both in R, the relation is not antisymmetric. The
relation is transitive, essentially because the product of 1's and —1's is £1.

c) The relation is reflexive, since » — 2 = 0 is a rational number. The relation is symmetric, because if
r —y is rational, then so is —(z — y) =y — 2. Since (1,—1) and (—1,1) are both in R, the relation is not
antisymmetric. To see that the relation is transitive, note that if (z,y) € R and (y,z) € IR, then 2 —y and
y — z are rational numbers. Therefore their sum = — 2 is rational, and that means that (z,2) € R.

d) Sinee 1 # 2.1, this relation is not reflexive. It is not symmetric, since (2,1) € R, but (1,2) € R. To see
that it is antisymmetric, suppose that » = 2y and y = 22. Then y = 4y, from which it follows that y =0
and hence ¥ = 0. Thus the only time that (z,y) and (y,#) are both is R is when » =y (and both are 0).
This relation is clearly not transitive, since (4,2) € R and (2,1) € R, but (4,1) ¢ R.

e) This relation is reflexive since squares are always nonnegative. It is clearly symmetric (the roles of # and
y in the statement are interchangeable). It is not antisymmetric, since (2,3) and (3,2) are both in R. It is
not transitive; for example, (1,0) € R and (0,—-2) € R, but (1,-2) ¢ R.

f) This is not reflexive, since (1,1) ¢ KH. It is clearly symmetric (the roles of 2 and y in the statement
are interchangeable). It is not antisymmetric, since (2,0) and (0,2) are both in R. It is not transitive; for
example, (1,0) € R and (0,-2) € R, but (1,-2) ¢ K.

g) This is not reflexive, since (2,2) € R. It is not symmetric, since (1,2) € R but (2,1) ¢ R. It is
antisymmetric, because if (r,y) € R and (y,2) € R, then = 1 and y = 1, so # = y. It is transitive,
because if (z,y) € R and (y,z) € R, then # =1 (and y = 1, although that doesn’t matter), so (z,z) € R.
h) This is not reflexive, since (2,2) € R. It is elearly symmetric (the roles of 2 and y in the statement
are interchangeable). It is not antisymmetric, since (2,1) and (1,2) are both in R. It is not transitive; for
example, (3,1) € R and (1,7) € I}, but (3,7) ¢ R.



7. Determine whether the relation R on the set of all integers
is reflexive, symmetric, antisymmetric, and/or transitive,
where (x, ¥) € R if and only if

a) x &= . b) xy = 1.

¢) x=y+lorx=y—1.

d) x =y (mod7). e) x is a multiple of y.
f) x and y are both negative or both nonnegative.
g) x = v, h) x = yi.

7. a) This relation is not reflexive since it is not the case that 1 # 1, for instance. It is symmetric: if z # y,
then of course y # 2. It is not antisymmetric, since, for instance, 1 # 2 and also 2 # 1. It is not transitive,
since 1 # 2 and 2 # 1, for instance, but it is not the case that 1 # 1.

b) This relation is not reflexive, since (0,0) is not included. It is symmetrie, because the commutative property
of multiplication tells us that xy = y=x, so that one of these quantities is greater than or equal to 1 if and
only if the other is. It is not antisymmetric, since, for instance, (2,3) and (3,2) are both included. It is
transitive. To see this, note that the relation holds between = and y if and only if either » and y are both
positive or = and y are both negative. So assume that (a,b) and (b, ¢) are both in the relation. There are
two cases, nearly identical. If a is positive, then so is b, since (a,b) € R; therefore so is ¢, since (b, ¢) € R,
and hence (a,¢) € R. If a is negative, then so is b, since (a,b) € R; therefore so is ¢, since (b,¢) € R, and
hence (a,¢) € R.

c) This relation is not reflexive, since (1,1) is not included, for instance. [t is symmetrie; the equation
2 =y — 1 is equivalent to the equation y = x + 1, which is the same as the equation = = y + 1 with the roles
of # and y reversed. {A more formal proof of symmetry would be by cases. If x is related to y then either
wx=y+1or x=y-—1. In the former case, y =z — 1, so y is related to x; in the latter case y =z + 1, so
y is related to x.) It is not antisymmetric, since, for instance, both (1,2) and (2,1) are in the relation. It is
not transitive, since, for instance, although both (1,2) and (2,1) are in the relation, (1,1) is not.

d) Recall that o = y (mod 7) means that  — v is a multiple of 7, i.e., that z — y = 7t for some integer .
This relation is reflexive, since © —z = 7-0 for all x. It is symmetric, since if z = ¥ (mod 7), then x —y = Tt
for some ¢; therefore y — x = 7(—t), so y = = (mod 7). It is not antisymmetric, since, for instance, we have
both 2 =9 and 9 = 2 (mod 7). It is transitive. Suppose £ = y and y = z (mod 7). This means that
r—y="Ts and y — z = 7t for some integers 8 and ¢. The trick is to add these two equations and note that
the y disappears; we get © —z = Ts+ 7t = 7(s+1). By definition, this means that z = z (mod 7), as desired.
e) Every number is a multiple of itself (namely 1 times itsell}, so this relation is reflexive. (There is one bit
of controversy here; we assume that 0 is to be considered a multiple of 0, even though we do not consider
that 0 is a divisor of 0.) It is clearly not symmetric, since, for instance, 6 is a multiple of 2, but 2 is not a
multiple of 6. The relation is not antisymmetric either; we have that 2 is a multiple of —2, for instance, and
~2 is a multiple of 2, but 2 #£ —2. The relation is transitive, however. If z is a multiple of y (say x = fy),
and y is a multiple of z (say y = sz ), then we have = = #(sz) = (£3)z, so we know that x is a multiple of z.
f) This relation is reflexive, since a and a are either both negative or both nonnegative. It is clearly symmetric
from its form. It is not antisymmetric, since 5 is related to 6 and 6 is related to 5, but 5 # 6. Finally, it is
transitive, since if a is related to b and b is related to ¢, then all three of them must be negative, or all three
must be nonnegative.



8. Show that the relation R = ¥ on a nonempty set S is sym-
metric and transitive, but not reflexive.

8. If R = 0, then the hypotheses of the conditional statements in the definitions of symmetric and transitive
are never true, so those statements are always true by definition. Because S # ), the statement (a,a) € R is
false for an element of S, so Ya(a.a) € R is not true; thus R is not reflexive.

9. Show that the relation R = @ on the empty set § =@ is
reflexive, symmetric, and transitive.

9. Each of the properties is a universally quantified statement. Because the domain is empty, each of them is
vacuously true.

10. Give an example of a relation on a set that is

a) both symmetric and antisymmetric.
b) neither symmetric nor antisymmetric.

A relation R on the set A is irreflexive if for every
ac A,(a.a) ¢ R. That is, R is irreflexive if no element
in A is related to itself.

10. We give the simplest example in each case.
a) the empty set on {a} (vacuously svmmetric and antisymmetric)
b) {{a,b),(b,a),(a,c)} on {a, b c}

15. Canarelation on a set be neither reflexive nor irreflexive?

15. The relation in Exercise 3a is neither reflexive nor irreflexive. It contains some of the pairs (a,a) but not all
of them.

16. Use quantifiers to express what it means for a relation to
be irreflexive.

16. Yo ((z,z) ¢ R)



17. Give an example of an irreflexive relation on the set of all
people.

17. Of course many answers are possible. The empty relation is always irreflexive (2 is never related to y). A less

trivial example would be (a,b) € R if and only if a is taller than b. Since nobody is taller than him/herself,
we always have (a,a) ¢ R.

A relation R is called asymmetric if (a, b) € R implies that
(b,a) € R. Exercises 18-24 explore the notion of an asym-

metric relation. Exercise 22 focuses on the difference between
asymmetry and antisymmetry.

22. Must an asymmetric relation also be antisymmetric? Must

an antisymmetric relation be asymmetric? Give reasons
for your answers.

22. An asymmetric relation must be antisymmetric, since the hypothesis of the condition for antisyvmmetry is false

if the relation is asymmetric. The relation {(a,a)} on {a} is antisymmetric but not asymmetric, however, so

the answer to the second question is no. In fact, it is easy to see that R is asymmetric if and only if R is
antisymmetric and irreflexive.

25. How many different relations are there from a set with m
elements to a set with n elements?

25. There are mn elements of the set 4 x B, if A is a set with m elements and B is a set with n elements.

A relation from A to B is a subset of A x B. Thus the question asks for the number of subsets of the set
A x B, which has mn elements. By the product rule, it is 2",




=

26.

Let R be a relation from a set A to a set B. The inverse rela-
tion from B to A, denoted by R‘l, is the set of orderi:l pairs
{(b,a) | (a,b) € R}. The complementary relation R is the
set of ordered pairs {(a. b) | (a, b) € R}.
26. Let R be the relation R = {(a., b) | a <= b} on the set of
integers. Find
a) R~ b) R.

a) RF'={(ha)|(a.b)e R} ={(b,a)|la<b}={(a,b) |a>h}
b) B={(a.b) | (a,b) ¢ R} = {(a.,b)|a £ b} = {(a,b)|a>b}

27

27.

. Let R be the relation R = {(a, b) | a divides b} on the set

of positive integers. Find
a) R~ b) R.

a) By definition the answer is { (b,a} | a divides b }, which, by changing the names of the dummy variables,
can also be written { {a,b) | b divides a } (The universal set is still the set of positive integers.)
b) By definition the answer is { (a,b) | @ does not divide b}. (The universal set is still the set of positive

integers.)

28.

28.

Let R be the relation on the set of all states in the United
States consisting of pairs (a, b) where state a borders

state b. Find
a) R b) R.

a) Since this relation is symmetric, B! = R.
b) This relation consists of all pairs (a,b) in which state e does not border state b.

29.

Suppose that the function f from A to B is a one-to-
one correspondence. Let R be the relation that equals the
graphof f. Thatis, R = {(a, f(a)) | a € A}. Whatis the
inverse relation R~'?

29. The inverse relation is just the graph of the inverse function. Somewhat more formally, we have R™! =

{ (fla).a) | ac A } = {(b.f (b)) | be B}, since we can index this collection just as easily by elements of

B as by elements of A (using the correspondence b = f(a)).



30. Let Ry = {(1,2),(2,3), (3,4} and Ry = {(1, 1), (1, 2),
(2,1),(2,2),(2,3), (3, 1), (3, 2), (3, 3), (3, 4)} be rela-
tions from {1, 2, 3} to {1, 2, 3, 4}. Find

al R U R,. b) Ry N Rs.
c) R — Rs. d) R; — Ry.

30. These are merely routine exercises in set theory. Note that By € Rs.
a) {(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4)} = Ra b) {(1,2),(2,3),(3,4)} = K4

31. Let A be the set of students at your school and B the set of
books in the school library. Let R| and R> be the relations
consisting of all ordered pairs (a, b), where student a is
required to read book b in a course, and where student a
has read book b, respectively. Describe the ordered pairs
in each of these relations.

a RiUR, b) RiN R,
¢) RiBd R d) Ry — R
e) R — Ry

31. This exercisge is just a matter of the definitions of the set operations.
a) the set of pairs {a,b) where a is required to read b in a course or has read b
b) the set of pairs (a,b) where a is required to read b in a course and has read b
¢) the set of pairs {a,b) where a is required to read b in a course or has read b, but not both; equivalently,
the set of pairs (a,b) where a is required to read b in a course but has not done so, or has read b although
not required to do so in a course
d) the set of pairs (a,b) where a is required to read b in a course but has not done so
e) the set of pairs (a,b) where a has read b although not required to do so in a course

32. Let R be the relation {(1, 2), (1, 3),(2,3), (2,4
and let § be the relation {(2, 1), (3.1),(3,2
Find S o R.

). (3,
). (

s

32, Since (1,2) € R and (2,1) € S, we have (1,1) € So R. We use similar reasoning to form the rest of the pairs

in the composition, giving us the answer {(1,1),(1,2),(2,1).(2,2)}.




33. Let R be the relation on the set of people consisting of
pairs (a, b), where @ is a parent of b. Let § be the relation
on the set of people consisting of pairs (a, b), where a
and b are siblings (brothers or sisters). What are S o R
and R 0 §7

33. To find S o R we want to find the set of pairs (a,c¢) such that for some person b, a is a parent of b, and b
is a sibling of ¢. Since brothers and sisters have the same parents, this means that a is also the parent of c.
Thus §o R is contained in the relation . More specifically, (a,¢) € So R if and only if a is the parent of ¢,
and ¢ has a sibling (who is necessarily also a child of a). To find Ro S we want to find the set of pairs (a,c)
such that for some person b, a is a sibling of b, and b is a parent of ¢. This is the same as the condition that
a is the aunt or uncle of ¢ (by blood, not marriage).

Exercises 34—37 deal with these relations on the set of real
numbers:
Ry ={la.b) e R? | @ = b}, the “greater than” relation,

Ry ={(a.b) e R? | @ = b}, the “greater than or equal to”
relation,

Ry ={la.b) e R? | @a = b}, the “less than” relation,

Ry ={la.b) e R? | @ = b}, the “less than or equal to”
relation,

Rs ={(a.b) € R? | @ = b}, the “equal to™ relation,
Rg = {(a.b) R? | @ # b}, the “unequal to” relation.

34. Find
a) R U R;. h) R U Rs.
c) RrM Ry. d) R;MN Rs.
e) Ry — R2. f) R — Ry.
g) R| & Ri. h) R» & Ra.

34. a) The union of two relations is the union of these sets. Thus R; U 5 holds between two real numbers if 12
holds or R5 holds (or both, it goes without saying). Here this means that the first number is greater than the
second or vice versa—in other words, that the two numbers are not equal. This is just relation Rg.

b) For (a,b) to be in R3 U Rg, we must have a > b or a = b. Since this happens precisely when a > b, we
see that the answer 1s Ra.

c) The intersection of two relations is the intersection of these sets. Thus Ry N Ry holds between two real
numbers if Ry holds and R, holds as well. Thus for (a,b) to be in Ry M Ry, we must have a > b and a < b.
Since this happens precisely when a = b, we see that the answer is 5.

d) For (a,b) to be in Rs M Rs, we must have a < b and a = b. It is impossible for ¢ < b and a = b to hold
at the same time, so the answer is @, i.e., the relation that never holds.

e) Recall that Ry — Ry = Iy M Ry. But Ry = Ry, so we are asked for Ry N Ry. It is impossible for a > b
and a < b to hold at the same time, so the answer is @, i.e., the relation that never holds.

f) Reasoning as in part (f), we want Ry N'R; = Ry N Ry, which is R; (this was part (c)).

g) Recall that R, @ Ry = (R, N R3) U (Rs N Ry). We see that Ry N Rs = Ry N Ry, = Ry, and RsN R, =
R;n Ry = Ry. Thus our answer is ) U Ry = Ry (as in part (a)).

h) Recall that Ro @ Ry = (Ro N Ry) U(Rs N Ra). We see that RoN Ry = RoN Ry = Ry, and RynRs =
RyN Ry = Ry. Thus our answer is ) U Ry = Ry (as in part (a)).



35. Find

a) Ry U Ry. h) R; U Rg.
c) Rim Rs. d) RaiM Rs.
e) K3 — Rg. f) Rg — Ra.
g) K2 B Re. h) R; & Rs.

35. a) The union of two relations is the union of these sets. Thus R, U R,y holds between two real numbers if Ry
holds or Ry holds (or both, it goes without saying). Since it is always true that a < b or b <a, RaU Ry is
all of R?, i.e., the relation that always holds.

b) For (a,b) to be in Rz U Ry, we must have a < b or a # b. Since this happens precisely when a # b, we
see that the answer is Rg.

¢) The intersection of two relations is the intersection of these sets. Thus Rz N R holds between two real
numbers if Ay holds and Rg holds as well. Thus for {a,b) to be in B3 N R, we must have a < b and a # b.
Since this happens precisely when a < b, we see that the answer is Hjy.

d) For {a,b) to be in R4 N Rg, we must have @ < b and a # b. Since this happens precisely when a < b, we

see that the answer is Hs.

e) Recall that Rz — Rg = R3 N Rg. But Bg = Ry, so we are asked for Rs M Rs. It is impossible for a < b
and a = b to hold at the same time, so the answer is (3, i.e., the relation that never holds.

f) Reasoning as in part (e), we want RN R3 = Rg Ry, which is clearly R, (since a # b and a > b precisely
when a > b).

g) Recall that R & Rs = (Rz N Rg) U (Re N R2). We see that Ry MR = R N Rs = Ry, and Rg N Ry =
g M Ry = Ry. Thus our answer is A5 U By = 1y,

h) Recall that Rz ¢ Rs = (R3 N Rs) U (Rs N R3). We see that R3NRs = R3 N Rs = Ry, and Rs N Ry =
Ry M Ry = Rs. Thus our answer is Rz U Rs = Ry.



36. Find

a) RyoRy. bh) Ry o R>.
¢) RjoR;. d) Ry o Ra.
e) RjoRs. f) Ry o Rg.
g) Ry o Rj. h) R;o0 Rs.

36. Recall that the composition of two relations all defined on a common set is defined as follows: (a,c¢) € So R

if and only if there is some element b such that (a,b) € R and (b,¢) € S. We have to apply this in each case.
a) For (a,c) to bein Ry o Ry, we must find an element b such that (a,b) € By and (b,¢) € Ry. This means
that a = b and b > ¢. Clearly this can be done if and only if a = ¢ to begin with. But that is precisely the
statement that (a,c) € Ry. Therefore we have Ry o Ry = Ry. We can interpret (part of) this as showing that

R, is transitive.

b) For (a,c) to bein R; o Ry, we must find an element & such that (a.b) € Ry and (b,¢) € Ry. This means
that a > b and b > ¢. Clearly this can be done if and only if a = ¢ to begin with. But that is precisely the
statement that (a,c¢) € Ry. Therefore we have R, o s = R;.

c) For (a,c) to be in Ry o Rz, we must find an element b such that (a,b) € Rz and (b,¢) € Ry. This means
that a < b and b = ¢. Clearly this can always be done simply by choosing b to be large enough. Therefore
we have Ry o [z = Rz_. the relation that always holds.

d) For (a,c) to be in Ry o Ry, we must find an element b such that (a,b) € Ry and (b,¢) € R;. This means
that a < b and b > ¢. Clearly this can always be done simply by choosing b to be large enough. Therefore
we have Ry o Ry = R2, the relation that always holds.

e) For (a,c) to be in Ry o Ry, we must find an element b such that (a,b) € Ry and (b,¢) € R;. This means
that @ = b and b > ¢. Clearly this can be done if and only if a > ¢ to begin with (choose b = a). But that is
precisely the statement that (a,¢) € Ry . Therefore we have Ry o Rs = R;. One way to look at this is to say
that Rs, the equality relation, acts as an identity for the composition operation (on the right—although it is
also an identity on the left as well).

f) For (a,e) to be in Ry o Rg, we must find an element b such that (a,b) € Rg and (b, ¢) € Ry. This means
that a #£ b and b > ¢. Clearly this can always be done simply by choosing b to be large enough. Therefore
we have Ry o Ry = R2, the relation that always holds.

g) For (a,c) to be in Ry o Ry, we must find an element b such that (a,b) € B3 and (b,¢) € Ry. This means
that a < b and b > ¢. Clearly this can always be done simply by choosing b to he large enough. Therefore
we have Rz o Rz = R2, the relation that always holds.

h) For (a,c) to be in 50 Ry, we must find an element b such that (a,b) € Ry and (b,¢) € R3. This means
that a < b and b < ¢. Clearly this can be done if and only if a < ¢ to begin with. But that is precisely the
statement that (a,c) € 3. Therefore we have 303 = R3. We can interpret (part of) this as showing that
R4 is transitive.



37. Find

a) Rro Ry. bh) R2 o R>.
¢) RzoR;s. d) Rsi0 Ry.
e) Rso Rj. f) R;o Rg.
g) R4 o0 Re. h) Rs o Rs.

37. Recall that the composition of two relations all defined on a eommon set is defined as follows: (a,¢) € So R
if and only if there is some element b such that (a,b) € R and (b,¢) € 5. We have to apply this in each case.
a) For (a,¢) to be in Ry o R, , we must find an element & such that (a,b) € Ry and (b,c) € Ry. This means
that a > b and b > ¢. Clearly this can be done if and only if a > ¢ to begin with. But that is precisely the
statement that (a,c) € R;. Therefore we have Ryo Ry = Ry .

b) For (a,e) to be in By o Rz, we must find an element b such that (a,b) € Ry and (b,¢) € Rs. This means
that ¢ = b and b = e. Clearly this can be done if and only if a > ¢ to begin with. But that is precisely the
statement that (a,¢) € Ry. Therefore we have Fs 0 Ry = Ry. In particular, this shows that Ry is transitive,
c) For (a,c) to be in fi3 o R, we must find an element b such that {a.b) € Ry and (b,¢) € Rz, This means
that a = b and b < ¢. Clearly this can be done if and only if a < ¢ to begin with (choose b = o). But that is
precisely the statement that (a,c) € Rz. Therefore we have A3 o i = R3. One way to look at this is to say
that R, the equality relation, acts as an identity for the composition operation (on the right—although it is
also an identity on the left as well).

d) For {a,c) to be in Ry o Ry, we must find an element b such that (a,b) € By and (b,¢) € Ry. This means
that @ > b and & < ¢. Clearly this can always be done simply by choosing b to be small enough. Therefore
we have Ry o R; = R?, the relation that always holds.

e) For (a,¢) to be in Rs o Ry, we must find an element b such that (a,b) € B3 and (b,¢) € Rs. This means
that ¢ < b and b = ¢. Clearly this can be done if and only if a < ¢ to begin with (choose b = ¢). But that
is precisely the statement that (e,c) € Rs. Therefore we have Ry o Rz = Hz. One way to look at this is to
say that Ry, the equality relation, acts as an identity for the composition operation {on the left—although it
is also an identity on the right as well).

f) For (a,c) to be in R3 o Ry, we must find an element b such that (a,b) € Ry and (b,¢) € Rz. This means
that @ # b and b < e. Clearly this can always be done simply by choosing b to be small enough. Therefore
we have R3o Rg = R?, the relation that always holds.

g) For (a,c) to be in Ry o Ry, we must find an element b such that (a,b) € Rg and (b,c) € Ry. This means
that @ # b and b < ¢. Clearly this can always be done simply by choosing b to be small enough. Therefore
we have Ry o Rg = R?, the relation that always holds.

h) For {a,c) to be in R o Hg, we must find an element b such that (a,b) € s and (b,¢) € Rg. This means
that a # b and b # ¢. Clearly this can always be done simply by choosing b to be something other than a
or ¢. Therefore we have Rgo Rg = R?, the relation that always holds. Note that since the answer is not
itself, we know that Hjs is not transitive.



40. Let Ry and R2 be the “divides™ and “is a multiple of™
relations on the set of all positive integers, respectively.
That is, Ry = {{a, b) | a divides b} and Ry = {(a, b) | a
is a multiple of b}. Find

a) Ry U R b) RN Ra.
¢) Ry — R d) R, — Ry.
e) R & R

40. Note that these two relations are inverses of each other, since a is a multiple of b if and only if b divides a
(see the preamble to Exercise 26).
a) The union of two relations is the union of these sets. Thus 17y U Ry holds between two integers if 12y holds
or R holds (or both, it goes without saying). Thus (a,b) € Ry U Ra if and only if a|b or b|a. There is not
a good easier way to state this.
b) The intersection of two relations is the intersection of these sets. Thus Ry N 5 holds between two integers
if i) holds and [, holds. Thus (a,b) € Ry N R, if and only if a|b and b|a. This happens if and only if
a==xband a 0.
¢) By definition Ry — Ry = Ry N Ry. Thus this relation holds between two integers if R; holds and R does
not hold. We can write this in symbols by saying that (a.b) € By — Ry if and only if a|b and b fa. This is
equivalent to saying that a|b and a £ £b.
d) By definition Rs — Ry = Ro M Ry . Thus this relation holds between two integers if Hs holds and Ry does
not hold. We can write this in symbols by saying that (a.b) € Ry — Ry if and only if b|a and a [b. This is
equivalent to saying that b|a and a £ £b.
e) We know that By & Ry = (Ry — Ry) U (Ry — Ry), so we look at our solutions to part (¢) and part (d).
Thus this relation holds between two integers if R; holds and Rs does not hold, or vice versa. This happens
if and only if a|b or b|a, but a # +b.



41

. Let Ry and R, be the “congruent modulo 37 and the
“congruent modulo 4 relations, respectively, on the set
of integers. That is, Ry = {(a, /) | a = b (mod 3)} and
Ry ={(a.b) | a = b (mod 4)}. Find

a) Rp U R b) RN Ra.
¢) Ry — R d) R»—Ry.
el R1$ R,

41. a) The union of two relations is the union of these sets. Thus H; U Rz holds between two integers if K
holds or Ry holds (or both, it goes without saying). Thus (a,b) € Ry U Ry if and only if @ = b (mod 3) or
a=b(mod 4). There is not a good easier way to state this, other than perhaps to say that a — b is a multiple
of either 3 or 4, or to work modulo 12 and write a —b =0, 3, 4, 6, 8, or 9 (mod 12).

b) The intersection of two relations is the intersection of these sets. Thus Ry M Rz holds between two integers
if Ry holds and Rz holds. Thus (a,b) € Ry N Ry if and only if o = b (mod 3} and a = b (mod 4). Since this
means that @ — b is a multiple of both 3 and 4, and that happens if and only if a — b is a multiple of 12, we
can state this more simply as a = b (mod 12).

c) By definition R, — R; = R; N Ry. Thus this relation holds between two integers if R; holds and Rs
does not hold. We can write this in symbols by saying that (e,b) € Ry — Rz if and only if @ = b (mod 3)
and a # b (mod 4). We could, if we wished, state this working modulo 12: (g,b) € Ry — Ry if and only if
a—=b=3.6, or 9 (mod 12).

d) By definition Ry — R, = Ry N R,. Thus this relation holds between two integers if R, holds and R;
does not hold. We can write this in symbols by saying that {a,b) € 2 — R, if and only if a = b (mod 4)
and a £ b (mod 3). We could, if we wished, state this working modulo 12: {(a,b) € R: — R, if and only if
a—b=4or8 (mod 12).

e) We know that Ry & Re = (R — Ry)U(R2 — Ry}, so we look at our solutions to part (¢) and part (d). Thus
this relation holds between two integers if By holds and Ry does not hold, or vice versa. We can write this in
symbols by saying that (a,b) € By @ Ry if and only if (a =b (mod 3) and a 2 b (mod 4) ) or (a = b (mod 4)
and a # b (mod 3)). We could, if we wished, state this working modulo 12: (a,b) € R, @ R, if and only if
a—b=3,4, 6, 80r9 (mod 12). We could also say that a — b is a multiple of 3 or 4 but not both.

42, List the 16 different relations on the set {0, 1}.

42, These are just the 16 different subsets of {(0,0),(0,1),(1,0),(1,1)}.

2w e

11.
12.
13.
14.
15.

16.
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43. How many of the 16 different relations on {0, 1} contain
the pair (0, 1)7

43. A relation is just a subset. A subset can either contain a specified element or not; half of them do and half
of them do not. Therefore 8 of the 16 relations on {0,1} contain the pair {0,1). Alternatively, a relation on
{0,1} containing the pair (0,1) is just a set of the form {(0,1)} U X, where X C {(0,0),(1,0),(1,1)}. Since
this latter set has 3 elements, it has 2% = & subsets.

44. Which of the 16 relations on {0, 1}, which you listed in
Exercise 42, are

a) reflexive? b) irreflexive?
¢) symmetric? d) antisymmetric?
e) asymmetric? f) transitive?

-

44, We list the relations by number as given in the solution above.
a) 8,13, 14, 16 b)1,3,4. 9 c) 1,2 5 89,12 15, 16
d) 1,2,3, 4,5, 6,7, 8, 10, 11, 13, 14 e)l. 3,4 f) 1,2, 3, 4,5,6,7,8 10, 11, 13, 14, 16

45. a) How many relations are there on the set {a, b, ¢, d}?
b) How many relations are there on the set {a, b, ¢, d}
that contain the pair (a, a)?

45. This is similar to Example 16 in this section.
a) A relation on a set S with n elements is a subset of S x §. Since S x § has n? elements, we are asking
for the number of subsets of a set with n? elements, which is 27", In our case n = 4, so the answer is
216 = 65,536.
b} In solving part (a), we had 16 binary choices to make—whether to include a pair (x,y) in the relation or
not as x and y ranged over the set {a,b, c,d}. In this part, one of those choices has been made for us: we

must include (a.a). We are free to make the other 15 choices. So the answer is 2'% = 32,768, See Exercise 47
for more problems of this type.




46.

46,

Let S be a set with n elements and let @ and & be dis-

tinct elements of §. How many relations R are there on §

such that

a) (a,b) € R? b) (a.b) € R?

¢) no ordered pair in R has a as its first element?

d) atleast one ordered pair in R has a as its first element?

€) no ordered pair in R has a as its first element or b as
its second element?

f) at least one ordered pair in R either has a as its first
element or has b as its second element?

This is similar to Example 16 in this section. A relation on a set 5 with n elements is a subset of 5 x 5. Since
S % S has n® elements, so there are 2" relations on S if no restrictions are imposed. One might observe
here that the condition that a # b is not relevant.

a) Half of these relations contain (a,b) and half do not, so the answer is o /2= 9"°~!_ Looking at it another
way, we see that there are n? — 1 choices involved in specifying such a relation, since we have no choice about
(a,b).

b) The analysis and answer are exactly the same as in part (a).

c) Of the n? possible pairs to put in R, exactly n of them have a as their first element. We must use none
of these, so there are n? — n pairs that we are free to work with. Therefore there are gn*—n possible choices
for R.

d) By part (c) we know that there are 2n*-1 relations that do not contain at least one ordered pair with a
as its first element, so all the other relations, namely gn* _gn*-m of them, do contain at least one ordered
pair with a as its first element.

e) We reason as in part (c). There are n ordered pairs that have a as their first element, and n more that
have b as their second element, although this counts (a,b) twice, so there are a total of 2n — 1 pairs that
violate the condition. This means that there are n? —2n+1 = (n—1)2 pairs that we are free to choose for R.
Thus the answer is 20"~ Another way to look at this is to visualize the matrix representing R. The a'h
row must be all ('s. as must the b*" column. If we eross out that row and column we have in effect an n — 1
by n— 1 matrix, with (n — ]]2 entries. Since we can fill each entry with either a 0 or a 1, there are 2(“‘1)2
choices for specifying S.

f) This is the opposite condition from part (e). Therefore reasoning as in part (d), we have 27" — 2(n—1)°
possible relations.



#47. How many relations are there on a set with n elements

that are
a) symmetric? b) antisymmetric?
c) asymmetric? d) irreflexive?

e) reflexive and symmetric?
f) neither reflexive nor irreflexive?

47. These are combinatorics problems, some harder than others. Let A be the set with n elements on which the
relations are defined.
a) To specify a symmetric relation, we need to decide, for each unordered pair {a,b} of distinct elements
of A, whether to include the pairs {a,b) and (b,¢) or leave them out; this can be done in 2 ways for each
such unordered pair. Also, for each element a € A, we need to decide whether to include (a,a) or not, again
2 possibilities. We can think of these two parts as one by considering an element to be an unordered pair with
repetition allowed. Thus we need to make this 2-fold choice C{n + 1,2) times, since there are C{n+2—1,2)
ways to choose an unordered pair with repetition allowed. Therefore the answer is 26012} — gnin+1)/2

*48. How many transitive relations are there on a set with n
elements if

al n=17 h)y n =27 c) n=37

48, a) There are two relations on a set with only one element, and they are both transitive.
b) There are 16 relations on a set with two elements, and we saw in Exercise 42f that 13 of them are transitive.

a2 s . . on .
¢) For n = 3 there are 23" = 512 relations. One way to find out how many of them are transitive is to use

a computer to generate them all and check each one for transitivity. If we do this, then we find that 171 of
them are transitive. Doing this by hand is not pleasant, since there are many cases to consider,




50. Suppose that R and § are reflexive relations on a set A.
Prove or disprove each of these statements.

a) RU S is reflexive.
b) RS is reflexive.
c) R @ S isirreflexive.
d) R — 5§ isirreflexive.
e) SoR isreflexive.

50. a) Since R contains all the pairs (z,z), so does R1JS. Therefore RS is reflexive.
b) Since R and S each contain all the pairs (x,z), so does M S. Therefore RS is reflexive.
c) Since R and S each contain all the pairs (z, ), we know that R$.S contains none of these pairs. Therefore
R3S is irreflexive.
d) Since i@ and S each contain all the pairs (z, x), we know that B— S contains none of these pairs. Therefore
It — 5 is irreflexive.

€) Since R and S each contain all the pairs (z,z), so does S o R. Therefore S o R is reflexive.

51. Show that the relation R on a set A is symmetric if and
only if R = R_], where R—! is the inverse relation.

51. We need to show two things. First, we need to show that if a relation R is symmetric, then & = -1, which
means we must show that R C R™! and R~ € R. To do this, let (a,b) € R. Since R is symmetric, this
implies that (b,a) € R. But since R~! consists of all pairs (a.b) such that (b,a) € R, this means that
{a,b) € #~!. Thus we have shown that B € R~'. Next let (a,0) € BR~'. By definition this means that
(b,a) € R. Since R is symmetric, this implies that (a,b) € R as well. Thus we have shown that B=!' C R.

Second we need to show that R = R™! implies that R is symmetric. To this end we let (a,b) € R
and try to show that (b,a) is also necessarily an element of R. Since (a,b) € R, the definition tells us that
(b,a) € R~!. But since we are under the hypothesis that B = R~ this tells us that (b,a) € R, exactly as
desired.

52. Show that the relation R on a set A is antisymmetric if
and only if R N R~ is a subset of the diagonal relation
A={la.a)|aecA}.

52. By definition, to say that R is antisymmetric is to say that RN R™! contains only pairs of the form (a.a).
The statement we are asked to prove is just a rephrasing of this.




53. Show that the relation R on a set A is reflexive if and only
if the inverse relation R~! is reflexive.

53. Suppose that R is reflexive. We must show that B~ is reflexive, i.e., that (a,a) € R7! for each ¢ € A. Now
since R is reflexive, we know that (a,a) € R for each a € R. By definition, this tells us that (a,a) € R™', as
desired. (Interchanging the two a’s in the pair (a,a) leaves it as it was.) Conversely, if R~ is reflexive, then
(a,a) € R~! for each a € A. By definition this means that {a.a) € R {again we interchanged the two a's).

54. Show that the relation R on a set A is reflexive if and only
if the complementary relation R is irreflexive.

54. This is immediate from the definition, since R is reflexive if and only if it contains all the pairs (x,z), which
in turn happens if and only if R contains none of these pairs, i.e., R is irreflexive.

55. Let R be a relation that is reflexive and transitive. Prove
that R" = R for all positive integers n.

55. We prove this by induction on n. The case n = 1 is trivial, since it is the statement B = R. Assume the
inductive hypothesis that R™ = R. We must show that R"*! = R. By definition R™*! = " o R. Thus our
task is to show that R" o R C R and R C R™ o R. The first uses the transitivity of 17, as follows. Suppose
that (a,c) € R™ o R. This means that there is an element b such that {a,b) € R and (b,e) € R". By the
inductive hypothesis, the latter statement implies that (b,¢) € R. Thus by the transitivity of R, we know
that (a,e) € R, as desired.

Next assume that (a,b) € R. We must show that {a,b) € R" o R. By the inductive hypothesis, R* = R,
and therefore R" is reflexive by assumption. Thus (b, b} € B". Since we have (a,b) € R and (b, b) € R*, we
have by definition that (a,b) is an element of B" o R, exactly as desired. (The first half of this proof was not
really necessary, since Theorem 1 in this section already told us that R* € R for all n.)

56. Let R be the relation on the set {1, 2, 3, 4, 5} containing
the ordered pairs (1, 1), (1, 2), (1, 3),(2,3),(2,4),(3, 1),
(3.4), (3.5), (4,2), (4,5), (5,.1), (5.2), and (5.4).
Find
a) R2. b) R3. ¢) R*. d) R°.

56. We just apply the definition each time. We find that R? contains all the pairs in {1,2,3,4,5} x {1,2,3.4.5}
except (2,3) and (4,5); and R*, R*, and R® contain all the pairs.



57. Let R be a reflexive relation on a set A. Show that R" is
reflexive for all positive integers n.

57. We use induction on n, the result being trivially true for n = 1. Assume that R™ is reflexive; we must show
that R™*1 is reflexive. Let a € A, where A is the set on which R is defined. By definition R"*! = R"cR. By
the inductive hypothesis, R™ is reflexive, so (a,a) € R™. Also, since R is reflexive by assumption, (a,a) € R.
Therefore by the definition of composition, (a,a) € R™ ¢ R, as desired.

*58. Let R be asymmetric relation. Show that R" is symmetric
for all positive integers n.

~

58. We prove this by induction on n. There is nothing to prove in the basis step (n = 1). Assume the inductive
hypothesis that R™ is symmetric, and let (a,¢) € R"™' = R" o R. Then there is a b £ A such that
{a,b) € R and (b,c) € R". Since R" and R are symmetric, (b,a) € R and (c,b) € R". Thus by definition
(e,a) € Ro R". We will have completed the proof if we can show that Ro R" = R"*!. This we do in
two steps. First, composition of relations is associative, that is, (Re §)eT = Ro (S T) for all relations
with appropriate domains and codomains. (The proof of this is straightforward applications of the definition.)
Second we show that Re B* = R™! by induetion on n. Again the basis step is trivial. Under the inductive
hypothesis, then, Ro R"*! = Ro (R" o R) = (Re R")o R = R"t' o R = R"*2 as desired.

59. Suppose that the relation R is irreflexive. Is R? necessar-
ily irreflexive? Give a reason for your answer.

59. It is not necessarily true that R? is irreflexive when R is. We might have pairs (a,b) and (b, a) both in R, with
a # b; then it would follow that (a,a) € R?, preventing R? from being irreflexive. As the simplest example,
let A= {1,2} and let R = {(1,2),(2,1)}. Then R is clearly irreflexive. In this case R* = {(1,1),(2,2)},
which is not irreflexive.



9.3

1. Representeach of theserelationson {1, 2, 3} witha matrix
(with the elements of this set listed in increasing order).
a) {(1,1),(1,2), (1, 3)}

b) {(1,2),(2,1),(2,2), (3, 3)}
¢) {(1,1),(1,2),(1,3),(2,2), (2,3), (3, 3)}
d) {(1,3). (3, 1}

1. In each case we use a 3 x 3 matrix, putting a 1 in position (4, j) if the pair (4, ) is in the relation and a 0 in
position (i, ;) if the pair (4, j) is not in the relation. For instance. in part (a) there are 1's in the first row,
since each of the pairs (1,1), (1,2}, and (1,3) are in the relation, and there are 's elsewhere.

a) [1 11 b) [0 1 0 ¢ 1 11 d) [o 0 1
0 0 0 1 1 0 0 1 1 0 0 0
00 0 00 1 00 1 1 00

2. Represent each of these relations on {1, 2, 3,4} with a
matrix (with the elements of this set listed in increasing
order).

a) {(1,2),(1,3),(1.4),(2,3),(2.4), (3, 4)}

b) {(1, 1), (1,4, (2, 2), (3, 3), (4. 1)}

c) {(1,2),(1,3),(1.4),(2,1),(2,3),(2,4). (3, 1).(3,2),
(3,4),(4,1).4,2), 4, 3)}

d) {(2,4),(3,1).(3.2),(3,4))

2. In each case we use a 4 x 4 matrix, putting a 1 in position (7, 7) if the pair (z.7) is in the relation and a 0
in position (i, 7) if the pair (z, 7) is not in the relation.

01 1 1 100 1 001 1 1 00 0 0
a 1g 0 1 1 P) 1o 1 0 0 c) 101 1 D 1o 0 0 1
000 1 00 1 0 110 1 110 1
00 0 0 100 0 1 11 0 00 0 0



3. List the ordered pairs in the relations on {1, 2, 3} corre-
sponding to these matrices (where the rows and columns
correspond to the integers listed in increasing order).

1 01 01 0
a) |01 0 by [0 1 0
1 01 01 0
1 1 1]
e |1 0 1
111

3. a) Since the (1,1)" entry is a 1, (1,1) is in the relation. Since (1,2)*" entry is a 0, (1,2) is not in the
relation. Continuing in this manner, we see that the relation contains (1,1), (1,3). (2,2), (3,1), and (3,3).
b) (1,2). (2,2), and (3,2) c) (1,1}, (1.2). (1,3), (2,1), (2,3), (3,1}, (3,2). and (3.3)

4. List the ordered pairs in the relations on {1, 2, 3, 4} corre-
sponding to these matrices (where the rows and columns
correspond to the integers listed in increasing order).

(1 1 0 1] 1110 ]
1101 0 0100
YVlo 111 DY lo 0 1 1

10 1 1] 100 1

[0 1 0 1]
o[t oo

010 1

1 0 1 0]

4. a) Since the (1,1)" entry is a 1, (1.1) is in the relation. Since (1,3)'™ entry is a 0, (1.3) is not in the
relation. Continuing in this manner, we see that the relation contains (1,1), (1.2}, (1,4), (2,1). (2,3), (3,2),
(3.3). (3.4)., (4,1), (4.3), and (4,4).

b) (1,1). (1,2). (1.3). (2.2), (3,3), (3.4}, (4,1), and (1,4)
¢) (1,2), (L4), (2,1), (2,3), (3,2), (3,4), (4.1), and (4,3)

5. How can the matrix representing a relation R on a set A
be used to determine whether the relation is irreflexive?

5. An irreflexive relation (see the preamble to Fxercise 11 in Section 9.1) is one in which ne element is related
to itself. In the matrix, this means that there are no 1's on the main diagonal (position m,, for some i).
Equivalently, the relation is irreflexive if and only if every entry on the main diagonal of the matrix is 0.



6. How can the matrix representing a relation R on a set A
be used to determine whether the relation is asymmetric?

6. An asymmetric relation (see the preamble to Exercise 18 in Seection 9.1) is one for which (a.b) € R and
(b,a) € R can never hold simultaneously, even if @ = b. In the matrix, this means that there are no 1's on the
main diagonal (position my; for some i), and there is no pair of 1's symmetrically placed around the main
diagonal (i.e.. we cannot have m;; = m;; = 1 for any values of i and j).

9. How many nonzero entries does the matrix representing
therelation Ron A = {1, 2, 3, ..., 100} consisting of the
first 100 positive integers have if R is

a) {(a,.b)|a=b)? b) {{a,b) | a £ b}?
¢) a.b)|la=b+1}? d) {(a.b)|a=1)7
e) {(a,b)|ab=1}?

9. Note that the total number of entries in the matrix is 1002 = 10,000.
a) There is a 1 in the matrix for each pair of distinct positive integers not exceeding 100, namely in position
(a,b) where @ > b. Thus the answer is the number of subsets of size 2 from a set of 100 elements, i.e.,
C'(100, 2) = 4950.
b) There is a 1 in the matrix at each position except the 100 positions on the main diagonal. Therefore the
answer is 100% — 100 = 9900.
¢) There is a 1 in the matrix at each entry just below the main diagonal (i.e., in positions (2,1), (3,2}, ...,
(100,99). Therefore the answer is 99.
d) The entire first row of this matrix corresponds to a = 1. Therefore the matrix has 100 nonzero entries,
e) This relation has only the one element (1,1) in it, so the matrix has just one nonzero entry.

10. How many nonzero entries does the matrix representing
the relation R on A = {1,2,3,..., 1000} consisting of
the first 1000 positive integers have if R is
a) {(a.b) |a = b)?

b) {(a.b) |la=bZx1}?

¢) {(a,b)|a—+b=1000}?
d) {(a,b) |a+b = 1001}?
e) {(a.b) |a #0)?

10. Note that the total number of entries in the matrix is 10002 = 1,000,000,
a) There is a 1 in the matrix for each pair of distinet positive integers not exceeding 1000, namely in position
(a,b) where a < b, as well as 1's along the diagonal. Thus the answer is the number of subsets of size 2 from
a set of 1000 elements, plus 1000, i.e., C(1000,2) + 1000 = 499500 + 1000 = 500,500.
b) There two 1’s in each row of the matrix except the first and last rows, in which there is one 1. Therefore
the answer is 998 -2 + 2 = 1998,
c) There is a 1 in the matrix at each entry just above and to the left of the “anti-diagonal” (i.e., in positions
(1,999), (2,998), ..., (999,1). Therefore the answer is 999,
d) There is a 1 in the matrix at each entry on or above (to the left of) the “anti-diagonal.” This is the same
number of 1's as in part (a), so the answer is again 500,500.
e) The condition is trivially true (since 1 < a < 1000), so all 1,000,000 entries are 1.



11. How can the matrix for R, the complement of the
relation R, be found from the matrix representing R,
when R is a relation on a finite set A?

11. Since the relation R is the relation that contains the pair (a,b) (where @ and b are elements of the appropriate

sets) if and only if R does not contain that pair, we can form the matrix for K simply by changing all the 1’s
to 0's and 0's to 1's in the matrix for 1.

12. How can the matrix for R~!, the inverse of the
relation R, be found from the matrix representing R,
when R is a relation on a finite set A?

12. We take the transpose of the matrix, since we want the (i,7)'" entry of the matrix for R~! to be 1 if and
only if the (4,1)* entry of R is 1.

13. Let R be the relation represented by the matrix

0
Mp=|1
1

11
1 0
0 1
Find the matrix representing

a) R b) R. o R

13. Exercise 12 tells us how to do part (a) (we take the transpose of the given matrix Mg, which in this case
happens to be the matrix itself). Exercise 11 tells us how to do part (b) (we change 1's to 0’s and 0's to 1’s
in Mpg). For part (c) we take the Boolean product of Mp with itself.

a) [0 1 1 by [1 0 0 c) 111
11 0 00 1 11 1
101 01 0 11 1




14. Let Ry and R> be relations on a set A represented by the

matrices
010 0 0
Mg =1 1 1 and Mg, =10 1 1
1 00 1 1
Find the matrices that represent
a) R UR,. b) Ry N R;. c) RroRy.

d) RiocR. e) Ry &£ R

0 1 0
14. a) The matrix for the union is formed by taking the join: |1 1 1
1 1 1
0 1 0
b) The matrix for the intersection is formed by taking the meet: |0 1 1
1 0 0
01 1
¢) The matrix is the Boolean product Mg, @©Mpg, = [1 1 1
0 1 0
1 1 1
d) The matrix is the Boolean product Mp, & Mp, = (1 1 1
0 1 0
0 0 0
e) The matrix is the entrywise XOR: |1 0 0
01 1

15. Let R be the relation represented by the matrix

0 1
Mp=|0 0
I 1

o = D

Find the matrices that represent
a) R b) R, ¢ R

15. We compute the Boolean powers of Mg thus Mp: = M%J =MgrpoMp, Mgz = Mljz] =Mp® Mg] , and
My = M = Mz oMY
a)

b) c)

0 0 1
1 10
011

— O
—
=
_— =D
ek
=




16. Let R be a relation on a set A with n elements. If there
are k nonzero entries in Mg, the matrix representing R,
how many nonzero entries are there in M z-1, the matrix
representing R, the inverse of R?

16. Since the matrix for R~ is just the transpose of the matrix for R (see Exercise 12), the entries are the same
collection of 0's and 1's, so there are k nonzero entries in Mp-1 as well.

[

17. Let R be a relation on a set A with n elements. If there
are k nonzero entries in Mp, the matrix representing R,
how many nonzero entries are there in l'Iﬁ._ the matrix

representing R. the complement of R?

17. The matrix for the complement has a 1 wherever the matrix for the relation has a 0, and vice versa. Therefore
the number of nonzero entries in My is n? — k, since these matrices have n rows and n columns.

18. Draw the directed graphs representing each of the rela-
tions from Exercise 1.

18. We draw the directed graphs, in each case with the vertex set being {1,2,3} and an edge from i to 7 whenever

(i,7) is in the relation.

OA—'C;;@O&Oﬂ

2
{(a) (b) (c) (d)

19. Draw the directed graphs representing each of the rela-
tions from Exercise 2.

19. In each case we need a vertex for each of the elements, and we put in a directed edge from z to y if there
is & 1 in position (z,y) of the matrix. For simplicity we have indicated pairs of edges between the same two
vertices in opposite directions by using a double arrowhead, rather than drawing two separate lines.




22, Draw the directed graph that represents the relation
l(a,a),(a.b), (b, c),(c.b), (c,d), (d.a), (d, b))}

In Exercises 23-28 list the ordered pairs in the relations rep-

resented by the directed graphs.

23. 24.

23. We list all the pairs (r,y) for which there is an edge from = to y in the directed graph:
{(a,b}.(a,c),(bc), (c.b)}.

25. We list all the pairs (z,y) for which there is an edge from z to y in the directed graph:

{{a,c),(b.a),(c.d),(d.b)}.
24, We list all the pairs (z,y) for which there is an edge from = to y in the directed graph:
{(-:1.._ a), (a,e), (b,a), (b,b), (b,e), (e, c}}.

26. We list all the pairs (z,y) for which there is an edge from = to y in the directed graph:
{(-:1.._ a), (a,b), (b,a),(b.b), (c,a), (e, ), (e, d), (d, d)} .

27. We list all the pairs (z,y) for which there is an edge from x to y in the directed graph:
{(a,a), (a,b), (a.c), (b,a), (b,b), (b,c), (c,a), (c,b),{d,d)}.



28. We list all the pairs (z,y) for which there is an edge from = to y in the directed graph:
{(a.a), (a,b), (5,a), (b.b), (c.), (¢, d). (d,), (d, d)}

28. We list all the pairs (z,y) for which there is an edge from = to y in the directed graph:
{(a.a), (a,b). (b.a), (b.B), (c.c), (c.d). (d.0), (d. d)}

30. How can the directed graph of a relation R on a finite
set A be used to determine whether a relation is irreflex-
ive?

30. Clearly R is irreflexive if and only if there are no loops in the directed graph for R.



9.4

1. Let R be the relation on the set {0, 1, 2, 3} containing
the ordered pairs (0, 1), (1, 1), (1, 2), (2,0), (2, 2), and
(3. 0). Find the

a) reflexive closure of R.  b) symmetric closure of R.

1. a) The reflexive closure of R is R together with all the pairs (a,a). Thus in this case the closure of R is
{(0,0),(0,1),(1,1),(1,2),(2,0).(2,2),(3,0),(3,3) }.
b) The symmetric closure of R is R together with all the pairs (b,a) for which (a,b) is in R. For example,
since (1,2) is in R, we need to add (2,1). Thus the closure of R is {(0,1),(0,2),(0,3),(1,0),(1,1),(1,2).
(2,0),(2,1),(2,2),(3,0)}.

2. Let R be the relation {(a, b) | a # b} on the set of inte-
gers. What is the reflexive closure of R?

2. When we add all the pairs (z,2) to the given relation we have all of Z x Z; in other words, we have the
relation that always holds.

3. Let R be the relation {(a, b) | a divides b} on the set of
integers. What is the symmetric closure of R?

3. To form the symmetric closure we need to add all the pairs (b, a) such that {a,b) is in R. In this case, that
means that we need to include pairs (b, a) such that a divides b, which is equivalent to saying that we need
to include all the pairs (a,b) such that b divides a. Thus the closure is { (a,b) | a divides b or b divides a }.

4. How can the directed graph representing the reflexive clo-
sure of a relation on a finite set be constructed from the
directed graph of the relation?

4. To form the reflexive closure, we simply need to add a loop at each vertex that does not already have one.




[

In Exercises 5-7 draw the directed graph of the reflexive clo-
sure of the relations with the directed graph shown.

5 6. 7
a C a b
A
. [
€ c d

5. We form the reflexive closure by taking the given directed graph and appending loops at all vertices at which
there are not already loops.

6. We form the reflexive closure by taking the given directed graph and appending loops at all vertices at which

there are not already loops.

7. We form the reflexive closure by taking the given directed graph and appending loops at all vertices at which
there are not already loops.

8. How can the directed graph representing the symmetric
closure of a relation on a finite set be constructed from
the directed graph for this relation?

8. To form the digraph of the symmetric closure, we simply need to add an edge from 2 to y whenever this edge
is not already in the directed graph but the edge from y to z is.



9. Find the directed graphs of the symmetric closures of the
relations with directed graphs shown in Exercises 5-7.

9. We form the symmetric closure by taking the given directed graph and appending an edge pointing in the
opposite direction for every edge already in the directed graph (unless it is already there); in other words, we
append the edge (b,a) whenever we see the edge (a,b). We have labeled the figures below (a), (b), and (c),

corresponding to Exercises b, 6, and 7, respectively,

a b a b

(= ]

(a) (b)

(c)

10. Find the smallest relation containing the relation in Ex-
ample 2 that is both reflexive and symmetric.

10. The symmetric closure was found in Example 2 to be the “is not equal to” relation. If we now make this

relation reflexive as well, we will have the relation that always holds.

11. Find the directed graph of the smallest relation that is
both reflexive and symmetric that contains each of the
relations with directed graphs shown in Exercises 5-7.

11. We are asked for the symmetric and reflexive closure of the given relation. We form it by taking the given
directed graph and appending (1) a loop at each vertex at which there is not already a loop and (2) an edge
pointing in the opposite direction for every edge already in the directed graph (unless it is already there). We
have labeled the figures below (a), (b), and (c), corresponding to Exercises 5, 6, and 7, respectively.

(b)

2 S

b

(c)




12. Suppose that the relation R on the finite set A is rep-
resented by the matrix Mpg. Show that the matrix that
represents the reflexive closure of R is Mp v I,,.

12. Mp v, is by definition the same as My except that it has all 1's on the main diagonal. This must represent
the reflexive closure of R, since this closure is the same as R except for the addition of all the pairs (z, z)
that were not already present.

13. Suppose that the relation R on the finite set A is rep-
resented by the matrix Mp. Show that the matrix that
represents the symmetric closure of R is Mp v M.

13. The symmetric closure of R is RU R~'. The matrix for R™! is MY | as we saw in Exercise 12 in Section 9.3.
The matrix for the union of two relations is the join of the matrices for the two relations, as we saw in
Section 9.3. Therefore the matrix representing the symmetric closure of R is indeed Mg v MY,

14. Show that the closure of a relation R with respect to a
property P, if it exists, is the intersection of all the rela-
tions with property P that contain R.

14. Suppose that the closure C exists. We must show that C is the intersection I of all the relations S that
have property P and contain 2. Certainly [ C C, since ' is one of the sets in the intersection. Conversely,
by definition of closure, ' is a subset of every relation S that has property P and contains R; therefore

is contained in their intersection.

1 o

.

15. When is it possible to define the “irreflexive closure™
of a relation R, that is, a relation that contains R, is ir-
reflexive, and is contained in every irreflexive relation
that contains R?

15. If R is already irreflexive, then it is clearly its own irreflexive closure. On the other hand if R is not irreflexive,
then there is no relation containing R that is irreflexive, since the loop or loops in R prevent any such relation
from being irreflexive. Thus in this case R has no irreflexive closure. This exercise shows essentially that the
concept of “irreflexive closure” is rather useless, since no relation has one unless it is already irreflexive (in
which case it is its own “irreflexive closure”).




16. Determine whether these sequences of vertices are paths
in this directed graph.

a) a.b,c.e

b) b.e.c.b.e

c¢) a.a.b.e.d. e

d) b.c.e.d.a.a. b

e) b.e.e,b.e,d. e d
fy a.a.b.b,c.c.b,e. d

16. In each case. the sequence is a path if and only if there is an edge from each vertex in the sequence to the
vertex following it.
a) This is a path. b) This is not a path (there is no edge from e to ¢). c) This is a path.
d) This is not a path (there is no edge from d to a). e) This is a path.

t) This is not a path (there is no loop at b).

17. Find all circuits of length three in the directed graph in
Exercise 16.

17. A circuit of length 3 can be written as a sequence of 4 vertices, each joined to the next by an edge of the
given directed graph, ending at the same vertex at which it began. There are several such circuits here, and
we just have to be careful and systematically list them all. There are the circuits formed entirely by the loops:
anaa, cece, and eeee. The triangles abea and adea also qualify. Two circuits start at b: beeb and beab.
There are two more circuits starting at ¢, namely ccbe and ebec. Similarly there are the circuits deed, eede
and edee, as well as the other trips around the triangle: eabe, dead, and eade.

18. Determine whether there is a path in the directed graph in
Exercise 16 beginning at the first vertex given and ending
at the second vertex given.

a) a. b b) b,a c) b, b
d) a.e e) b.d f)y e.d
g) d.d h) e.a i) e, c

18. In the language of Chapter 10, this digraph is strongly connected, so there will be a path from every vertex
to every other vertex.
a) One path is a,b. b) One path is b, e, a. ¢) One path is b, e, b: a shorter one is just b.
d) One path is a,b.e. e) One path is b, e, d. f) One path is e, e, d.
g) One path is d,e,d. Another is the path of length 0 from d to itself.

h) One path is e,a. Another is e,a,b.e,a,b,e,a.b, e, a. i) One path is e, a,b, c.



19. Let R be the relation on the set {1, 2, 3, 4, 5} containing
the ordered pairs (1, 3), (2, 4), (3, 1), (3, 5), (4, 3). (5, 1),
(5,2),and (5,4). Find
a) RZ. by R, c) R
d) RS e) RO f) R*.

19. The way to form these powers is first to form the matrix representing R, namely

001 0 0

00010

Mrp=1|1 0 0 0 1

00100

1 1 01 0
and then take successive Boolean powers of it to get the matrices representing R?, R®, and so on. Finally, for
part (f) we take the join of the matrices representing R, R?, ..., R®. Since the matrix is a perfectly good

way to express the relation, we will not list the ordered pairs.
a) The matrix for R? is the Boolean product of the matrix displayed above with itself, namely

ri1 0 0 0 17
00100
Mp=ME=|1 1110
1 0 0 01
LO 0 1 1 0l
b) The matrix for R&® is the Boolean product of the first matrix displayed above with the answer to part (a),
namely
rt 1 1 1 07
1 0 0 0 1
Mp=Mi=[10111
11110
L1 01 0 14

¢) The matrix for R* is the Boolean product of the first matrix displayed above with the answer to part (b),
namely

Mp: = Ml =

==
—

[ e p—t

b e b el

1
0
1
1
11 1

d) The matrix for R® is the Boolean product of the first matrix displayed above with the answer to part (c),
namely

11 1117
10111
Mps =M@= |1 1 1 1 1
11111
L1 1 1 1 1

e) The matrix for R® is the Boolean product of the first matrix displayed above with the answer to part (d),
namely

10101 1 17
111 11
Mpe=MZ =11 11 1 1
1111 1
L1 1 1 1 1.

f) The matrix for R* is the join of the first matrix displayed above and the answers to parts (a) through (d),
namely

Mg = Mg vME v ME v v M =

= et e e
o e
b e
= e
b e e




20. Let R be the relation that contains the pair (a, b) if a
and b are cities such that there is a direct non-stop airline
flight from a to b. When is (@, b) in

a) R?? h) R3? ¢) R*?

20. a) The pair (a,b) is in R? precisely when there is a city ¢ such that there is a direct flight from a to ¢ and
a direct flight from ¢ to b—in other words, when it is possible to fly from a to b with a scheduled stop (and
possibly a plane change) in some intermediate city.

b) The pair (a,b) is in R® precisely when there are cities ¢ and d such that there is a direct flight from a
to ¢, a direct flight from ¢ to d, and a direct flight from d to b—in other words, when it is possible to fly
from a to b with two scheduled stops (and possibly a plane change at one or both) in intermediate cities.

c) The pair (a,b) is in R* precisely when it is possible to fly from a to b.

21. Let R be the relation on the set of all students contain-
ing the ordered pair (a. b) if @ and b are in at least one
common class and a £ b. When is (a, b) in

a) R?? h) R3? ¢) R*?

21. a) The pair (a,b) is in R? if there is a person ¢ other than a or b who is in a class with a and a class with b.
Note that it is almost certain that (a,a) is in R?, since as long as a is taking a class that has at least one
other person in it, that person serves as the “¢.”

b) The pair (e,b) is in R® if there are persons ¢ (different from a) and d (different from b and ¢) such that
¢ is in a class with @, ¢ isin a class with d, and d is in a class with b.

¢) The pair (a,b) is in R* if there is a sequence of persons, cg, ¢1, €1, ..., ¢, with n > 1, such that ¢p = a,
¢, = b, and for each i from 1 to n, ¢, # ¢ and ¢;— is in at least one class with ¢, .

22. Suppose that the relation R is reflexive. Show that R* is
reflexive.

22, Since R C R*, clearly if A C R, then A C R*.




23. Suppose that the relation R is symmetric. Show that R*
is symmetric.

23. Suppose that (a,b) € R*; then there is a path from a to b in (the digraph for) R. Given such a path, if R
is symmetric, then the reverse of every edge in the path is also in R; therefore there is a path from b to a
in R (following the given path backwards). This means that (b,a) is in B whenever (a.b) is, exactly what
we needed to prove.

24, Suppose that the relation R is irreflexive. Is the
relation R? necessarily irreflexive?

24. It is certainly possibly for R? to contain some pairs (a,a). For example, let R = {(1,2),(2.1)}.

25, Use Algorithm 1 to find the transitive closures of these
relations on {1, 2, 3, 4}.
a) {((1,2),(2,1),(2,3). (3.4), 4, 1)}
b) {(2,1),(2,3), (3. 1), (3.4). (4, 1). (4, 3)}
) {(1,2),(1,3),(1,4),(2.3),(2,4). (3, 4)}
d) (LD, (L4),(2,1),(2,3), (3. 1), (3,2). (3.4). (4, 2)}

25. Algorithm 1 finds the transitive closure by computing the successive powers and taking their join. We exhibit
our answers in matrix form as Mp VM[;] V... VME';_] = Mg-.

a) 710 07 M1

1 0 0 1 07 ro 1 0 17 1l 0 1 07 11 1 17
1 010 Vv 0101 v 10 10 Y 01 01 _ 11 1 1
0 0 01 1 0 00 0100 1 010 11 1 1
L1 0 0 0J 01 0 0l L1 0 1 0l 0 1 0 11 1 1 1 1.
b} 0 0 0 07 F0 0 0 0 r0 0 0 07 ro 0 0 07 0 0 0 0
1010 V 1 001 v 1 010 v 100 1} _ |1 011
10 01 101 0 1 0 01 101 0 1 011
L1 0 1 0J L1 0 0 1. (1 0 1 0l L1 0 0 1 L1 0 1 1.




26. Use Algorithm 1 to find the transitive closures of these

relations on {a, b, ¢, d, e}.

a) {(a,c), (b.d), (c,a),(d.b), (e, d)}

b) {(B,¢). (b.e). (c.e). (d. a), (e. b). (e. )}

¢) {(a,b), (a,c),(a,e), (b,a),(b,c)ic,a) (c,b)(d a),

(e, d)}
d) {(a,e), (b,a), (b, d),(c.d),(d,a),(d,c), (e a), e b),

(e.c), (e,e)}

26. a) We show the various matrices that are involved. First,

=A.
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It follows that A
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Therefore the answer B, the meet of all the A’s,is A v A2,

1 0 1 0
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b) For this and the remaining parts we just exhibit the matrices that arise.
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27. Use Warshall's algorithm to find the transitive closures
of the relations in Exercise 25.

27. In Warshall's algorithm (Algorithm 2 in this section), we compute a sequence of matrices Wy (the matrix
representing R), W, Wy, ..., W, , the last of which represents the transitive closure of R. Each matrix
W;. comes from the matrix Wy_; in the following way. The (i, /)*" entry of W is the “v” of the (i, )t
entry of Wi_; with the “A” of the (z, k)™ entry and the (k,7)*® entry of Wy_;. We will exhibit our solution
by listing the matrices Wy, Wy, W,, W3, Wy, in that order; W, represents the answer. In each case
W is the matrix of the given relation. To compute the next matrix in the solution, we need to compute it
one entry at a time, using the equation just discussed (the “V” of the corresponding entry in the previous
matrix with the “A” of two entries in the old matrix), i.e., as 7 and j each go from 1 to 4, we need to write
down the (i, )™ entry using this formula. Note that in computing Wy, the k™™ row and the k*" column are

unchanged, but some of the entries in other rows and columns may change.

a) 10
1
0
1

b) [0
1

oo @

0

Note that the

d)

1
1
1
0

1
0

oD DD [=N=]

[aes

0

0

1
0
0

—_— =

o O = =

07 0
0 1
1 0
0. L1
07 ()
0 1
1 1
0. |1
1 0
1 0
1 0
0 0

1
1
0
1

0
{0
0
0

1
0
0
0

0

e QR

cp r1r 1107 111117 r1
0 1110 1111 1
1 0 00 1 0001 1
ol (111 0f L1 1 1 11 11
0f [0 0 0 071 [0 0 0 07 TO
0 1 0 10 L 011 1
1 1001 1001 1
ol L1 o104 L1 O 1 11 L1
1 0111 0111 0
1 0011 00 11 0
1 0 001 0001 0
0 0000 00 00 0
relation was already transitive, so each matrix in the sequence was
1 1001 1001 1
1 1 011 1111 1
1 1 1 11 1111 1
0 1 1 11 1111 1

D D e

1 1
0 1
1 1
0 0

=]

o B B

1 1 17
1 11
1 11
1 1 1.
0 0 07
01 1
01 1
0 1 1.
11 1
0 1 1
0 0 1
00 0
the same.
1 1 1
1 1 1
1 11
1 11




28. Use Warshall's algorithm to find the transitive closures

of the relations in Exercise 26.

28. We compute the matrices W; for 1 = 0,1,2,3.4.5, and then W is the answer.

oo o o o — o o = — = D =
=R =l ocooDo o~ o= = o~
- oo WA. - - - - oo o~
o e R s QY Il — = = oo oo -
o R B i Woa — o = D o= 9o = ™

I Il I Il

it —_—
W? W =R =1 ] W..;. W2
I oo Qo oo

o= o0 - O-OoO-=- oS00 DO DD e - 2= = OO
o 00 O =00 oo -9 — e —— O - ——— =2 O
Co-0o0 o =00 W..;_ O HHH D S =S =

I Il Il I I

Ra o Wl. e Wa Wl

Il
Coccoco coocoo ©SHHOS © =0 OO0 A A A~ SO 2O
o oo+ o oA~ DO oo O oo OO0 0D - OO0 - 200
- o o000 ~oO-~o00 @00 O L = —_ e D DD e -——- 20 O~
ocoo—~N0 o0oo~R0 DOoO090HA O - o HF OO A —HH—A - D0 0O —
_mUDanD_._I_nU.I.DnU___HuDDlD___Hu = o o D o o o o~ _DIDI.I_
L 11 j

I Il Il I I I Il

= z -3 2 = z =3
® ) 0) =)

= -

o= o= o~

= = = o= =

oo o

o= o= o~

— = O o
= e ]
oo o~
oo oo -
e e B

Ws =



29, Find the smallest relation containing the relation
{(1.2), (1,4), (3, 3), (4, 1)} that is
a) reflexive and transitive.
b) symmetric and transitive.
¢) reflexive, symmetric, and transitive.

29. a) We need to include at least the transitive closure, which we can compute by Algorithm 1 or Algorithm 2 to

1101
. N 0000 . s . . . .
be (in matrix form) 001 ol All we need in addition is the pair (2,2) in order to make the relation
1101
reflexive. Note that the result is still transitive (the addition of a pair (a,a) cannot make a transitive relation
11 01
no longer transitive), so our answer is 100
£ : 0010
1 1 01

30. Finish the proc-}f of the case when a # & in Lemma 1.

30. Let m be the length of the shortest path from a to b, and let a = xo,21,....2m-1.2m — b be such a
path. If m > n —1, then m > n, so m+ 1 > n+ 1, which means that not all of the vertices zq, =1, x9,

. &y are distinet. Thus z; = 2; for some i and j with 0 <4 < 7 <m (but not both i =0 and j =m,

since a # b). We can then excise the circuit from z; to z;, leaving a shorter path from a to b, namely

L0, ... T Tjs1,. .., Ty . This contradicts the choice of m. Therefore m < n — 1., as desired.

34. Adapt Warshall’s algorithm to find the reflexive closure of
the transitive closure of a relation on a set with n elements.

34. All we need to do is make sure that all the pairs (z,z) are included. An easy way to accomplish this is to
add them at the end, by setting W := W v I,.



9.5

1. Which of these relations on {0, 1, 2, 3} are equivalence

relations? Determine the properties of an equivalence re-

lation that the others lack.

ﬂ) {{.090)|(1-1)1 (2' 2.} ( )

by {(0.0),(0,2),(2,0).(2,2),(2.3),(3.2),(3.3))

¢ {(0,0),(1,1),(1,2),(2,1),(2,2),3, 3}

d) {(0,0),(1,1),(1,3),(2,2),(2,3).3, 1,3, 2)
(3.3}

e) {(0.0), (0, 1), (0,2), (1,00, (1, 1), (1, 2), (2, 0),
(2| 2)! (31 3:'}

}

1. In each case we need to check for reflexivity, symmetry, and transitivity.

a) This is an equivalence relation; it is easily seen to have all three properties. The equivalence classes all
have just one element.

b) This relation is not reflexive since the pair {1, 1) is missing. It is also not transitive, since the pairs (0, 2)
and (2,3) are there, but not (0.3).

c) This is an equivalence relation. The elements 1 and 2 are in the same equivalence class; 0 and 3 are each
in their own equivalence class.

d) This relation is reflexive and symmetric, but it is not transitive. The pairs (1,3) and (3,2) are present,
but not (1,2).

e) This relation would be an equivalence relation were the pair (2,1) present. As it is, its absence makes the

relation neither symmetric nor transitive.

2. Which of these relations on the set of all people are equiv-

alence relations? Determine the properties of an equiva-
lence relation that the others lack.

a) {(a, b) | a and b are the same age}

b) {(a,b) | a and b have the same parents)

¢) {(a,b) | a and b share a common parent}

d) {(a,b) | a and b have met)

e) {(a,b) | a and b speak a common language)

a) This is an equivalence relation by Exercise 9 ( f(z) is 2's age).

b) This is an equivalence relation by Exercise 9 ( f(z) is a’s parents).

¢) This is not an equivalence relation, since it need not be transitive. (We assume that biological parentage
is at issue here, so it is possible for A to be the child of W and X, B to be the child of X and ¥, and €
to be the child of ¥ and Z. Then A is related to B, and B is related to C', but A is not related to C'.)
d) This is not an equivalence relation since it is clearly not transitive.

e) Again, just as in part (c), this is not transitive.




3. Which of these relations on the set of all functions from Z
to Z are equivalence relations? Determine the properties
of an equivalence relation that the others lack.

a) {(f.g) | F(l) =g}

b) {(f. &) | F(0) =g or f(1) =g(l))

o) {(f.g)]| fix) —gx)y=1forallx € Z}

d) {(f.g)]| for some C eZ, for all x e Z, f(x) —
gx)=C}

e) {(f.g) | f(0)=g(l)and f(I) = g(0)}

3. As in Exercise 1, we need to check for reflexivity, symmetry, and transitivity.
a) This is an equivalence relation, one of the general form that two things are considered equivalent if they
have the same “something” (see Exercise 9 for a formalization of this idea). In this case the “something” is
the value at 1.
b) This is not an equivalence relation because it is not transitive. Let f(z) = 0, g(z) = =, and h(z) =1
for all & € Z. Then f is related to g since f(0) = g{0), and g is related to h since g(1) = h(1), but f is
not related to h since they have no values in common. By inspection we see that this relation is reflexive and
symmetric.
¢) This relation has none of the three properties. It is not reflexive, since f(z) — f(z) = 0 # 1. It is not
symietric, since if f(z) — g(z) =1, then g(z) — f(z) = =1 # 1. Tt is not transitive, since if f(z) - g(z) =1
and g(z) — h(z) = 1, then f(r)—h(z) =2 # 1.
d) This is an equivalence relation. Two functions are related here if they differ by a constant. It is clearly
reflexive (the constant is 0). It is symmetric, since if f{x)—g{z) = C, then g(x)— f(z) = —C. It is transitive,
since if f(z) — g(x) = C} and g{x) — h{x) = Cy, then f(z) — h{z) = C3, where C3 = C; + C3 {add the first
two equations).
e) This relation is not reflexive, since there are lots of functions f (for instance, f(x) =z} that do not have
the property that f(0) = f(1). It is symmetric by inspection (the roles of f and g are the same). 1t is not
transitive. For instance, let f(0) = g(1) = (0} = 7, and let f(1) = g(0) = h(1) = 3; fill in the remaining
values arbitrarily. Then f and g are related, as are g and h, but f is not related to h since 7 # 3.

4. Define three equivalence relations on the set of students
in your discrete mathematics class different from the re-
lations discussed in the text. Determine the equivalence
classes for each of these equivalence relations.

4. One relation is that a and b are related if they were born in the same U.S. state (with “not in a state of the
U.5." counting as one state). Here the equivalence classes are the nonempty sets of students from each state.
Another example is for a to be related to b if @ and b have lived the same number of complete decades. The
equivalence classes are the set of all 10-to-19 year-olds, the set of all 20-to-29 year-olds, and so on (the sets
among these that are nonempty, that is). A third example is for a to be related to b if 10 is a divisor of the
difference between a's age and b's age, where “age” means the whole number of years since birth, as of the
first day of class. For each i = 0,1,...,9, there is the equivalence class (if it is nonempty) of those students
whose age ends with the digit .




5. Define three equivalence relations on the set of buildings
on a college campus. Determine the equivalence classes
for each of these equivalence relations.

5. Obviously there are many possible answers here. We can say that two buildings are equivalent if they were
opened during the same year; an equivalence class consists of the set of buildings opened in a given year (as
long as there was at least one building spened that year). For another example, we can define two buildings to
be equivalent if they have the same number of stories; the equivalence classes are the set of 1-story buildings,
the set of 2-story buildings, and so on (one class for each n for which there is at least one n-story building).
In our third example, partition the set of all buildings into two classes—those in which you do have a class this
semester and those in which you don’t. (We assume that each of these is nonempty.) Every building in which
vou have a class is equivalent to every building in which you have a class (including itself), and every building
in which you don’t have a class is equivalent to every building in which you don’t have a class (including
itself).

6. Define three equivalence relations on the set of classes of-
fered at your school. Determine the equivalence classes
for each of these equivalence relations.

6. One way to partition the classes would be by level. At many schools, classes have three-digit numbers, the
first digit of which is approximately the level of the course, so that courses numbered 100-199 are taken by
freshman, 200-299 by sophomores, and so on. Formally, two classes are related if their numbers have the
same digit in the hundreds column; the equivalence classes are the set of all 100-level classes, the set of all
200-level classes, and so on. A second example would focus on department. Two classes are equivalent if
they are offered by the same department; for example, MATH 154 is equivalent to MATH 372, but not to
EGR 141. The equivalence classes are the sets of classes offered by each department (the set of math classes,
the set of engineering classes, and so on). A third—and more egocentric——classification would be to have one
equivalence class be the set of classes that you have completed successfully and the other equivalence class to
be all the other classes. Formally, two classes are equivalent if they have the same answer to the question,

LN

“Have I completed this class successfully?




7. Show that the relation of logical equivalence on the set
of all compound propositions is an equivalence relation.
What are the equivalence classes of F and of T?

7. Twa propositions are equivalent if their truth tables are identical. This relation is reflexive, since the truth
table of a proposition is identical to itself. 1t is symmetric, since if p and ¢ have the same truth table, then
g and p have the same truth table. There is one technical point about transitivity that should be noted. We
need to assume that the truth tables, as we consider them for three propositions p, ¢, and r, have the same

atomic variables in them. If we make this assumption (and it cannot hurt to do so, since adding information
about extra variables that do not appear in a pair of propositions does not change the truth value of the
propositions), then we argue in the usual way: if p and g have identical truth tables, and if g and r have
identical truth tables, then p and r have that same common truth table. The proposition T is always true;
therefore the equivalence class for this proposition consists of all propositions that are always true, no matter
what truth values the atomic variables have. Recall that we call such a proposition a tautology. Therefore
the equivalence class of T is the set of all tautologies. Similarly, the equivalence class of F is the set of all
contradictions.

8. Let R be the relation on the set of all sets of real numbers
such that S R T if and only if § and T have the same
cardinality. Show that R is an equivalence relation. What
are the equivalence classes of the sets {0, 1, 2} and Z7

8. Recall (Definition 1 in Section 2.5) that two sets have the same cardinality if there is a bijection (one-to-one
and onto function) from one set to the other. We must show that R is reflexive, symmetric, and transitive.
Every set has the same cardinality as itself because of the identity function. If f is a bijection from S to T,
then f~! is a bijection from T to S, so R is symmetric. Finally, if f is a bijection from S to T and g
is a bijection from T to U, then go f is a bijection from T to U, so R is transitive (see Exercise 33 in
Section 2.3).

The equivalence class of {1,2,3} is the set of all three-element sets of real numbers, including such
sets as {4,25,1948} and {e, 7, +/2}. Similarly, [Z] is the set of all infinite countable sets of real numbers (see
Section 2.5), such as the set of natural numbers, the set of rational numbers, and the set of the prime numbers,
but not including the set {1,2,3} (it's too small) or the set of all real numbers (it’s too big). See Section 2.5

for more on countable sets.




9. Suppose that A is a nonempty set, and f is a function that
has A as its domain. Let R be the relation on A consisting
of all ordered pairs (x, v) such that f(x) = f(v).

a) Show that R is an equivalence relation on A.
b) What are the equivalence classes of R?

9. This is an important exercise, since very many equivalence relations are of this form. (In fact, all of them
are—see Exercise 10. A relation defined by a condition of the form “z and y are equivalent if and only if

" is an equivalence relation. The function f here tells what about = and y are “the

they have the same ...
same.” )

a) This relation is reflexive, since obviously f(x) = f(z) for all x € A. It is symmetric, since if f(x) = f(y),
then f(y) = f(x) (this is one of the fundamental properties of equality). It is transitive, since if fix) = f(y)
and f(y) = f(z), then f(x) = f(z) (this is another fundamental property of equality).

b) The equivalence class of = is the set of all ¥ € A such that f(y) = f(z). This is by definition just the
inverse image of f(z). Thus the equivalence classes are precisely the sets f~1(b) for every b in the range
of f.

10. Suppose that A is a nonempty set and R is an equivalence
relation on A. Show that there is a function f with A as its
domain such that (x, y) € R if and only if f(x) = f(¥).

10. The function that sends each = € A to its equivalence class [z] is obviously such a function.

11. Show that the relation R consisting of all pairs (x, ¥) such
that x and v are bit strings of length three or more that
agree in their first three bits is an equivalence relation on
the set of all bit strings of length three or more.

11. This follows from Exercise 9, where f is the function that takes a bit string of length 3 or more to its first 3
bits.

12. Show that the relation R consisting of all pairs (x, v) such
that x and y are bit strings of length three or more that
agree except perhaps in their first three bits is an equiva-
lence relation on the set of all bit strings of length three
or more.

12. This follows from Exercise 9, where f is the function that takes a bit string of length n > 3 to its last n — 3
bits.



13. Show that the relation R consisting of all pairs (x, ¥) such
that x and y are bit strings that agree in their first and third
bits is an equivalence relation on the set of all bit strings
of length three or more.

13. This follows from Exercise 9, where f is the function that takes a bit string of length 3 or more to the ordered
pair (b1, b3}, where by is the first bit of the string and b3 is the third bit of the string. Two bit strings agree on
their first and third bits if and only if the corresponding ordered pairs for these two strings are equal ordered

pairs.

14. Let R be the relation consisting of all pairs (x, ¥) such
that x and v are strings of uppercase and lowercase En-
glish letters with the property that for every positive in-
teger n, the nth characters in x and y are the same letter,
either uppercase or lowercase. Show that R is an equiva-
lence relation.

14. This follows from Exercise 9, where f is the function that takes a string of uppercase and lowercase English
letters and changes all the lower case letters to their uppercase equivalents (and leaves the uppercase letters

unchanged).

15. Let R be the relation on the set of ordered pairs of posi-
tive integers such that ((a, b), (c, d)) € R if and only if
a +d = b + c. Show that R is an equivalence relation.

15. By algebra, the given condition is the same as the condition that f((a,b)) = f((c.d)), where f((x,4)) =x—y.
Therefore by Exercise 9 this is an equivalence relation. If we want a more explicit proof, we can argne as
follows. For reflexivity, ((a,),(a.b)) € R becanse a + b = b+ a. For symmetry, ((a.b).{(c,d)) € R if and
only if a +d = b+ ¢, which is equivalent to ¢+ b = d + a, which is true if and only if ((¢,d), (a,b)) € R. For
transitivity, suppose ((a,b).(c,d)) € R and ((¢,d), (e, f)} € R. Thus we have a+d =b+c and e+e=d+ f.
Adding, we obtain a +d+c+e =b+c+d+ f. Simplifying, we have a + ¢ = b+ f, which tells us that

((a,b:l: (81 f]) € R.




16. Let R be the relation on the set of ordered pairs of posi-
tive integers such that ((a, b), (¢, d)) € R if and only if
ad = bc. Show that R is an equivalence relation.

16. This follows from Exercise 9, where f is the function from the set of pairs of positive integers to the set of
positive rational numbers that takes (a,b) to a/b, since clearly ad = be if and only if a/b = ¢/d.

If we want an explicit proof, we can argue as follows. For reflexivity, ((a,b), (a,b)) € R because a-b = b-a.
If ((a,b), (e.d)) € R then ad = be, which also means that ¢b = da, so {(e,d), (a. b)) € R: this tells us that R is
symmetric. Finally, if ((a.b), (c,d)) € R and ((e,d), (e, f)) € R then ad = be and ¢f = de. Multiplying these
equations gives acdf = bede, and since all these numbers are nonzero, we have af = be, so ((a,bh), (e, f)) € R;

this tells us that R is transitive.

17. (Requires calculus)

a) Show that the relation R on the set of all differentiable
functions from R to R consisting of all pairs (f, g)
such that f'(x) = g'(x) for all real numbers x is an
equivalence relation.

b) Which functions are in the same equivalence class as
the function f(x) = x2?

17. a) This follows from Exercise 9, where the function f from the set of differentiable functions (from R to R)
to the set of functions (from R to R) is the differentiation operator—i.e., f of a function g is the function
g'. The best way to think about this is that any relation defined by a statement of the form “a and b are
equivalent if they have the same whatever” is an equivalence relation. Here *whatever” is “derivative”; in the
general situation of Exercise 9, “whatever” is “function value under f.”
b) We are asking for all functions that have the same derivative that the function f(z) = 2? has, ie., all
funetions of & whose derivative is 2z. In other words, we are asking for the general antiderivative of 2z, and
we know that [2z = 2%+ C, where C is any constant. Therefore the functions in the same equivalence class
as f(z) = a? are all the functions of the form g(z) = 2% 4+ C for some constant C'. Indefinite integrals in
calculus, then, give equivalence classes of functions as answers, not just functions.
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18. (Requires calculus)

a) Let n be a positive integer. Show that the relation
R on the set of all polynomials with real-valued
coefficients consisting of all pairs (f, g) such that
F(x) = g™ (x) is an equivalence relation. [Here
£ (x) is the nth derivative of f(x).]

b) Which functions are in the same equivalence class as
the function f(x) = x*, where n = 3?

18. a) This follows from Exercise 9, where the function f from the set of polynomials to the set of polynomials is
the operator that takes the derivative n times—i.e., f of a function g is the function ¢™'. The best way to
think about this is that any relation defined by a statement of the form “a and b are equivalent if they have
the same whatever” is an equivalence relation. Here “whatever” is “n*' derivative”; in the general sitnation
of Exercise 9, *whatever” is “function value under f.”

b) The third derivative of z* is 24x. Since the third derivative of a polynomial of degree 2 or less is 0, the
polynomials of the form z* + az? + bz + ¢ have the same third derivative. Thus these are the functions in the

same equivalence class as f.

19. Let R be the relation on the set of all URLs (or Web ad-
dresses) such that x R v if and only if the Web page at
x is the same as the Web page at y. Show that R is an
equivalence relation.

19, This follows from Exercise 9, where the function f from the set of all URLs to the set of all Web pages is the
function that assigns to each URL the Web page for that URL.

20. Let R be the relation on the set of all people who have
visited a particular Web page such that x R y if and only
if person x and person y have followed the same set of
links starting at this Web page (going from Web page to
Web page until they stop using the Web). Show that R is
an equivalence relation.

20. This follows from Exercise 9, where the function [ from the set of people to the set of Web-traversing behaviors
starting at the given particular Web page takes the person to the behavior that person exhibited.




In Exercises 21-23 determine whether the relation with the
directed graph shown is an equivalence relation.

21.

22,
a b
: '
d c

21. We need to observe whether the relation is reflexive (there is a loop at each vertex), symmetric (every edge

that appears is accompanied by its antiparallel mate—an edge involving the same two vertices but pointing
in the opposite direction), and transitive (paths of length 2 are accompanied by the path of length 1—i.e.,
edge—between the same two vertices in the same direction). We see that this relation is not transitive, since
the edges (¢,d) and (d,c) are missing.

23. As in FExercise 21, this relation is not transitive, since several required edges are missing (such as (a,¢)).

22. We need to observe whether the relation is reflexive (there is a loop at each vertex), symmetric (every edge

that appears is accompanied by its antiparallel mate —an edge involving the same two vertices but pointing
in the opposite direction), and transitive (paths of length 2 are accompanied by the path of length 1—i.e.,
edge—between the same two vertices in the same direction). We see that this relation is an equivalence

relation, satisfying all three properties. The equivalence classes are {a,d} and {b,c}.

24, Determine whether the relations represented by these

24,

zero—one matrices are equivalence relations.

111 3
a (011 b) 0) o
111 ]

111
111
111
000

a) This is not an equivalence relation, since it is not symmetric.

b) This is an equivalence relation; one equivalence class consists of the first and third elements, and the other
consists of the second and fourth elements.

c) This is an equivalence relation; one equivalence class consists of the first, second, and third elements, and
the other consists of the fourth element.



25, Show that the relation R on the set of all bit strings such
that s Rt if and only if s and f contain the same number
of Is is an equivalence relation.

25. This follows from Exercise 9, with f being the function from bit strings to nonnegative integers given by

f(s) =the number of 1’s in s.

30. What are the equivalence classes of these bit strings for
the equivalence relation in Exercise 117
a} 010 b) 1011 c) 11111 d) 01010101

b) all the strings whose first three bits are 101

30. a) all the strings whose first three bits are 010
d) all the strings whose first three bits are 010

¢) all the strings whose first three bits are 111

35. What is the congruence class [n]s (that is, the equiva-
lence class of # with respect to congruence modulo 3)

when n is
a) 27 b) 37 c) 67 dy —37

35. We have by definition that [nj; = {i]i=n (mod 5) }.
a) 2s={i|{i=2(mod5)}={...,—8,-3,2,7,12,...}
b) Bs={i|li=3(mod5)}={...,-7,-2,3,813,...}
) 6 ={i|i=6(mod5)} =1... -9, ~41.611,...}
d) [-3s={i|li=-3(mod5)}={...,—8-3.2,7,12,...} (the same as [2]5)

36. What is the congruence class [4],, when m is
a) 27 b) 37 c) 67 d) 87

36. In each case, the equivalence class of 4 is the set of all integers congruent to 4, modulo m.
a) {4+2n|nel}={...,-2,0,2,4,...} by {4+3n|neZ}=1{..,-2,147...}
c) {d+bn|neZ}=1..,-2,410,16,...} d) {4+8n|ned}={...,—4.4,12,20,...}




38. What is the equivalence class of each of these strings with
respect to the equivalence relation in Exercise 147

a) No b) Yes c) Help

38. In each case we need to allow all strings that agree with the given string if we ignore the case in which the
letters ocecur.
a) {NO,No,nO, no}
b) {YES, YEs, YeS, Yes, yES, yEs, yeS, yes}
c) {HELP, HELp, HEIP, HElp, HeLP, HeLp, HelP, Help, hELP hELp, hEIP, hElp, he LP  heLp, helP, help}

41. Which of these collections of subsets are partitions of
{1,2,3.4,5,6}7
a) {1,2}.{2,3,4}.{4. 5.6} b) {1}, {2, 3,6}, {4). {5}
c) {2.4,6},{1.3,5} d) {1.4,5). (2,6}

41. The sets in a partition must be nonempty, pairwise digjoint, and have as their union all of the underlying set.
a) This is not a partition, since the sets are not pairwise disjoint (the elements 2 and 4 each appear in two
of the sets).

b) This is a partition. ¢) This is a partition.
d) This is not a partition, since none of the sets includes the element 3.

42. Which of these collections of subsets are partitions of
{(—3.-2,-1.0,1,2,3}?
a) {—=3,—-1.1,3}.{-2.0,2)
b) {-3,-2,-1,0}1{0,1,2,3
f] 1_3- 3}' {_21 2}5 {_L 1}' {
d) {—3,-2,2.3}, 1.1}

}
0}

42. a) This is a partition, since it satisfies the definition.
b) This is not a partition, since the subsets are not disjoint.
¢) This is a partition, since it satisfies the definition.

d) This is not a partition, since the union of the subsets leaves out 0.




=y = ket e LN § ke |
43, Which of these collections of subsets are partitions of the

set of bit strings of length 87

a) the set of bit strings that begin with 1, the set of bit
strings that begin with 00, and the set of bit strings
that begin with 01

b) the set of bit strings that contain the string 00, the set
of bit strings that contain the string 01, the set of bit
strings that contain the string 10, and the set of bit
strings that contain the string 11

¢) the set of bit strings that end with 00, the set of bit
strings that end with 01, the set of bit strings that end
with 10, and the set of bit strings that end with 11

d) the set of bit strings that end with 111, the set of bit
strings that end with 011, and the set of bit strings that
end with 00

e) the set of bit strings that contain 3% ones for some
nonnegative integer k; the set of bit strings that con-
tain 3k + 1 ones for some nonnegative integer k; and
the set of bit strings that contain 3k 4 2 ones for some
nonnegative integer k.

43. In each case, we need to see that the collection of subsets satisfy three conditions: they are nonempty, they
are pairwise disgjoint, and their union is the entire set of 256 bit strings of length 8.
a) This is a partition, since strings must begin either 1 or (), and those that begin 0 must continue with either
0 or 1 in their second position. It is clear that the three subsets satisfy the conditions.
b) This is not a partition, since these subsets are not pairwise disjoint. The string 00000001, for example,
contains both 00 and 01.
c) This is clearly a partition. Each of these four subsets contains 64 bit strings, and no two of them overlap.
d) This is not a partition, because the union of these subsets is not the entire set. For example, the string
00000010 is in none of the subsets.
e) This is a partition. Each bit string contains some number of 1's. This number can be identified in exactly
one way as of the form 3k, the form 3k + 1, or the form 3k + 2, where & is a nonnegative integer; it really is
just looking at the equivalence classes of the number of 1's modulo 3.



44. Which of these collections of subsets are partitions of the
set of integers?
a) the set of even integers and the set of odd integers

b) the set of positive integers and the set of negative in-
tegers

¢) the set of integers divisible by 3, the set of integers
leaving a remainder of 1 when divided by 3, and the

set of integers leaving a remainder of 2 when divided
by 3
d) the set of integers less than —100, the set of integers

with absolute value not exceeding 100, and the set of
integers greater than 100

e) the set of integers not divisible by 3, the set of even
integers, and the set of integers that leave a remainder
of 3 when divided by 6

44, a) This is clearly a partition. b) This is not a partition, since 0 is in neither set.
¢) This is a partition by the division algorithm.
d) This is a partition, since the second set mentioned is the set of all number between —100 and 100, inclusive.

e) The first two sets are not disjoint (4 is in both), so this is not a partition.




45, Which of these are partitions of the set Z x Z of ordered
pairs of integers?
a) the set of pairs (x, ¥), where x or y is odd: the set
of pairs (x, ), where x is even; and the set of pairs
(x, v), where v is even

b) the set of pairs (x, ¥). where both x and y are odd;
the set of pairs (x, y), where exactly one of x and ¥
is odd: and the set of pairs (x, ¥), where both x and y
are even

¢) the set of pairs (x, y), where x is positive; the set of
pairs (x, y), where y is positive; and the set of pairs
(x, y), where both x and y are negative

d) the set of pairs (x, ¥), where 3 | x and 3 | y; the set
of pairs (x, y), where 3 | x and 3 }J y: the set of pairs
(x,y), where 3 }/ x and 3 | y: and the set of pairs
(x,v),where3 J xand 3 } ¥

e) the set of pairs (x,y), where x = 0 and y = 0; the
set of pairs (x, y), where x = O and y =< 0: the set of
pairs (x, ¥), where x = 0 and y = 0; and the set of
pairs (x,y), wherex =0andy =0

f) the setof pairs (x, ¥), where x £ Oand y £ 0 the set
of pairs (x, y), where x = O and y 3£ 0; and the set of
pairs (x,y), wherex Z0andy =0

45. In each case, we need to see that the collection of subsets satisfy three conditions: they are nonempty, they
are pairwise disjoint, and their union is the entire set Z x Z.
a) This is not a partition, since the subsets are not pairwise disjoint. The pair (2,3), for example, is in both
of the first two subsets listed.
b} This is a partition. Every pair satisfies exactly one of the conditions listed about the parity of = and y,
and clearly these subsets are nonempty.
¢) This is not a partition, since the subsets are not pairwise disjoint. The pair (2,3), for example, is in both
of the first two subsets listed. Also, (0,0) is in none of the subsets.
d) This is a partition. Every pair satisfies exactly one of the conditions listed about the divisibility of z and
y by 3, and clearly these subsets are nonempty.

e) This is a partition. Every pair satisfies exactly one of the conditions listed about the positiveness of z and
4, and clearly these subsets are nonempty.

f) This is not a partition, because the union of these subsets is not all of Z x Z. In particular, (0,0) is in
none of the parts.




46. Which of these are partitions of the set of real numbers?

a) the negative real numbers, {0}, the positive real
numbers

b) the set of irrational numbers, the set of rational
numbers

¢) thesetof intervals [k, k+ 1], k=..., =2, —1,0,
1,2,...

d) the set of intervals (K, k+ 1), k=...,—-2,—1,0,
1,2,...

e) the set of intervals (K, k+ 1. k=...,-2,—1,0,
1,2,...

f) thesets {x +n | n e Z)forallx [0, 1)

46. a) This is a partition, since it satisfies the definition.
b) This is a partition, since it satisfies the definition.
¢) This is not a partition, since the intervals are not disjoint (they share endpoints).
d) This is not a partition, since the union of the subsets leaves out the integers.
e) This is a partition, since it satisfies the definition.
) This is a partition, since it satisfies the definition. Each equivalence class consists of all real numbers with
a fixed fractional part.

47. List the ordered pairs in the equivalence relations pro-
duced by these partitions of {0, 1, 2, 3, 4, 5}.

a) {0}, (1,2}, {3.4,5)

b) {0, 1}, {2, 3}, {4, 5}

¢ {0,1,2},(3.4,5)

d) {0}, {1}, {2}, (3], {4}, {5}

47. In each case, we need to list all the pairs we can where both coordinates are chosen from the same subset. We
should proceed in an organized fashion, listing all the pairs corresponding to each part of the partition.
a) {(0-.0),(1.1)&1.2},(11}?(2,2% (3,3).(3,4),(3,5),(4,3),(4,4),(4,5),(5.3),(5,4), (5,5)}
b) {(0,0),(0,1), (1,00, (1,1).(2,2),(2.3),(3,2),(3,3), (4,4), (4.5), (5,4), (5,5)}
c] { (0,0}, (0,1, (0, 2 (1 0), (1,1), (1,2), (2,0), (2,1), (2,2), (3,3), (3,4), (3,5), ( , (4,4), (4,5), (5,3),
(5, 5)}
{ ):(2:2),(3,3).(4,4),(5,5)}




48. List the ordered pairs in the equivalence relations pro-
duced by these partitions of {a, b, c. d, e, f. g}

a) {a, b}, {c.d}). {e, . g}

b) {a}. {b}. {c. d}. {e, f}). {¢}
¢) {a,b,c.d} le, f g}
d) {a,c,e g} (b, d}. {f}

A partition Py is called a refinement of the partition P> if
every set in Py is a subset of one of the sets in Ps.

48, In each case, we need to list all the pairs we can where both coordinates are chosen from the same subset. We
should proceed in an organized fashion, listing all the pairs corresponding to each part of the partition.
a) {(a,a).(a.b).(b,a).(b.b),(c.c).(c.d),(d.c),(d.d).(e.€). (e, f), (e, 9). (f.e).(f. ). (f.9).(g.€). (9. ). (9.9)}
b) {(a,a),(b.b).(c.c), (c.d),(d.c).(d.d).(e,€).(e. f).(f.€). (. ). (9.9)}
c) {(a,a),(a,b),(a,c),(a,d),(b,a),(b,b). (b c), (b.d), (e, a),(e,b),(c,c), (c.d),(d,a),(d.b),(d,c).(d,d),
(e.e).(e,f).(e.q). (f.e), ([, f).(f.9).(g.€),(g.f),(9.9)}
d) {(a,a), (a,0), (a,€), (@, 0), (¢:a), (&), (c,€). (€, ). (,a). (e ). (e,), (€, 9), (95 @)s (95 ) (35 €), (9 9),
(b,b), (b.d),(d,b),(d,d),(f. f)}



9.6

1.

Which of these relations on {0, 1, 2, 3} are partial order-
ings? Determine the properties of a partial ordering that
the others lack.

a) {(0,0),(1,1),(2,2),(3,3))
b) {(0,0), (1, 1).(2,0),(2,2),(2.3),(3.2), (3. 3)}
¢) {(0,0),(1,1).(1,2),(2,2),(3.3)}

(0.0, (1, 1), (1,2), (1,3), (2,2). (2,3), 3, 3)}

(0,0), (0, 1). (0, 2), (1,0, (1. 1), (1. 2), (2, 0),
(2,2),3,3)

{
{
d) {
{

e)

. The question in each case is whether the relation is reflexive, antisymmetric, and transitive. Suppose the

relation is called R.

a) Clearly this relation is reflexive because each of 0, 1, 2, and 3 is related to itself. The relation is also
antisymmetric, because the only way for a to be related to b is for a to equal b. Similarly, the relation is
transitive, because if a is related to b, and b is related to ¢, then necessarily a = b = ¢ g0 a is related to ¢
(because the relation is reflexive). This is just the equality relation on {0,1,2,3}; more generally, the equality
relation on any set satisfies all three conditions and is therefore a partial ordering. (It is the smallest partial
ordering; reflexivity insures that every partial ordering contains at least all the pairs (a,a).)

b) This is not a partial ordering, because although the relation is reflexive, it is not antisymmetric (we have
2R3 and 3R2, but 2 # 3), and not transitive (3 R2 and 2 R0, but 3 is not related to 0).

¢) This is a partial ordering, because it is clearly reflexive; is antisymmetric (we just need to note that (1,2)
is the only pair in the relation with unequal components); and is transitive (for the same reason).

d) This is a partial ordering because it is the “less than or equal to” relation on {1,2,3} together with the
isolated point 0.

e) This is not a partial ordering. The relation is clearly reflexive, but it is not antisymmetric (0 R1 and 1 R0,
but 0% 1) and not transitive (2 R0 and OR 1, but 2 is not related to 1}.




2. Which of these relations on {0, 1, 2, 3} are partial order-
ings? Determine the properties of a partial ordering that
the others lack.

a) {(0,0),(2,2),(3,3)}

b) {(0.0), (1, 1),(2,0), (2, 2), (2, 3). (3, 3)}

c) {(0.0, (1, 1), (1,2),(2,2). (3, 1). (3, 3)}

d) {(0,0), (1, 1), (1.2),(1,3),(2,0). (2, 2), (2, 3),
(3,0). (3, 3)}

e) {(0,0),(0,1).(0,2),(0,3), (1,0), (1, 1), (1,2),
(1,3).(2.0.(2,2).3.3)}

2. The question in each case is whether the relation is reflexive, antisymmetric, and transitive. Suppose the
relation is called K.
a) This relation is not reflexive because 1 is not related to itself. Therefore R is not a partial ordering. The
relation is antisymmetric. becanse the only way for a to be related to b is for a to equal b. Similarly, the
relation is transitive, because if a is related to b, and b is related to ¢, then necessarily a=b=c¢# 1 s0 a
is related to e.
b) This is a partial ordering, because it is reflexive and the pairs (2,0) and (2,3) will not introduce any
violations of antisymmetry or transitivity.
¢) This is not a partial ordering, because it is not transitive: 3 R1 and 1 R2, but 3 is not related to 2. It is
reflexive and the pairs (1,2) and (3,1) will not introduce any violations of antisymmetry.
d) This is not a partial ordering, because it is not transitive: 1 R2 and 2 R0, but 1 is not related to 0. It is
reflexive and the nonreflexive pairs will not introduce any violations of antisymmetry.
e) The relation is clearly reflexive, but it is not antisymmetric (0 £ 1 and 1 R0, but 0 # 1) and not transitive
(2R0 and 0R1, but 2 is not related to 1).

3. Is (5, R) a poset if § is the set of all people in the world
and (a. b) € R, where a and b are people, if
a) a is taller than 67
b) a is not taller than &7

¢) a = b ora is an ancestor of b7

d) a and b have a common friend?

3. The question in each case is whether the relation is reflexive, antisymmetric, and transitive.

a) Since nobody is taller than himself, this relation is not reflexive so (S, R) cannot be a poset.

b) To be not taller means to be exactly the same height or shorter. Two different people & and y could have
the same height, in which case r Ry and y Rx but = # y, so R is not antisymmetric and this is not a poset.
¢) This is a poset. The equality clause in the definition of R guarantees that R is reflexive. To check
antisymmetry and transitivity it suffices to consider unequal elements (these rules hold for equal elements
trivially). If a is an ancestor of b, then b cannot be an ancestor of a (for one thing, an ancestor needs to be
born before any descendant), so the relation is vacuously antisymmetric. If @ is an ancestor of b, and b is an
ancestor of ¢, then by the way “ancestor” is defined, we know that a is an ancestor of b; thus R is transitive.
d) This relation is not antisymmetric. Let a and b be any two distinct friends of yours. Then a R& and
bRa,but a #b.



4. Is (5, R) a poset if § is the set of all people in the world
and (a. b) € R, where a and b are people, if

a) a is no shorter than b7
b) a weighs more than b?
¢) a = b ora is a descendant of b?

d) a and b do not have a common friend?

4. The question in each case is whether the relation is reflexive, antisymmetric, and transitive.
a) Since there surely are unequal people of the same height (to whatever degree of precision heights are
measured ), this relation is not antisymmetric, so (S, R) cannot be a poset.
b) Since nobody weighs more than herself, this relation is not reflexive, so (S, R) cannot be a poset.
¢) This is a poset. The equality clause in the definition of R guarantees that R is reflexive. To check
antisymmetry and transitivity it suffices to consider unequal elements (these rules hold for equal elements
trivially). If @ is a descendant of b, then b cannot be a descendant of a (for one thing, a descendant needs
to be born after any ancestor), so the relation is vacuously antisymmetric. If a is a descendant of b, and b is
a descendant of ¢, then by the way “descendant” is defined, we know that a is a descendant of ¢; thus R is
transitive.

d) This relation is not reflexive, because anyone and himself have a common friend.

5. Which of these are posets?
a) (Z,=) b (Z,FH o (L= d) (Z, 1)

5. The question in each case is whether the relation is reflexive, antisymmetric, and transitive.
a) The equality relation on any set satisfies all three conditions and is therefore a partial partial ordering.
{It is the smallest partial partial ordering; reflexivity insures that every partial order contains at least all the
pairs {(a,a).)
b) This is not a poset, since the relation is not reflexive, not antisymmetric, and not transitive (the absence
of one of these properties would have been enough to give a negative answer).
¢) This is a poset, as explained in Example 1.
d) This is not a poset. The relation is not reflexive, since it is not true, for instance, that 2 2. (It also is not
antisymmetric and not transitive.)




6. Which of these are posets?

6.

a) (R,=) b)(R.<) ¢ (R =) d R #H

The guestion in each case is whether the relation is reflexive, antisymmetric, and transitive.

a) The equality relation on any set satisfies all three conditions and is therefore a partial order. (It is the
smallest partial order; reflexivity insures that every partial order contains at least all the pairs (a,a).)

b) This is not a poset, since the relation is not reflexive, although it is antisymmetric and transitive. Any
relation of this sort can be turned into a partial ordering by adding in all the pairs (a,a).

¢) This is a poset, very similar to Example 1.

d) This is not a poset, since the relation is not reflexive, not antisymmetric, and not transitive (the absence

of one of these properties would have been enough to give a negative answer).

7!

. Determine whether the relations represented by these

zero—one matrices are partial orders.

111 1 1 1

a) |1 1 0 b) [0 1 0
0 1 00 1
1 1 1 0

o 0L 10

00 1 1

1101

a) This relation is {(1,1),(1,2),(1,3),(2,1),(2,2),(3,3)}. It is not antisymmetric because (1,2) and (2,1)
are both in the relation. but 1 # 2. We can see this visually by the pair of 1's symmetrically placed around
the main diagonal at positions (1,2) and (2,1). Therefore this matrix does not represent a partial order.

b) This matrix represents a partial order. Reflexivity is clear. The only other pairs in the relation are (1,2)
and (1,3). and clearly neither can he part of a counterexample to antisymmetry or transitivity.

c) A little trial and error shows that this relation is not transitive ((4,1) and (1, 3) are present, but not (4,3))
and therefore not a partial order.




8. Determine whether the relations represented by these
zero—one matrices are partial orders.

1 0 1 1 00
a) |1 10 b |0 1 0
0 0 1 1 0 1
1010"‘
o |01 10
00 1 1
_1101J

8. a) This relation is {(1,1),(1.3).(2,1),(2,.2).(3,3)}. It is clearly reflexive and antisymmetric. The only pairs
that might present problems with transitivity are the nondiagonal pairs, (2,1) and (1,3). If the relation were
to be transitive, then we would also need the pair (2,3) in the relation. Since it is not there, the relation is
not a partial order.

b) Reasoning as in part (a), we see that this relation is a partial order, since the pair (3,1) can cause no
problem with transitivity.
c) A little trial and error shows that this relation is not transitive ((1,3) and (3,4) are present, but not (1,4))

and therefore not a partial order.

In Exercises 9-11 determine whether the relation with the
directed graph shown is a partial order.

9. 10.
Y o )

A N

9. This relation is not transitive (there are arrows from a to b and from b to d, but there is no arrow from a
to d), so it is not a partial order.

10. This relation is not transitive (there is no arrow from ¢ to b), so it is not a partial order.

11. This relation is a partial order, since it has all three properties—it is reflexive (there is an arrow at each
point), antisymmetric (there are no pairs of arrows going in opposite directions between two different points},
and transitive (there is no missing arrow from some z to some z when there were arrows from x to y and y
to z).




12. Let (S. R) be a poset. Show that (5, R—Yisalsoa poset,
where R~! is the inverse of R. The poset (S, R_') is
called the dual of (5, R).

12. This follows immediately from the definition. Clearly R~! is reflexive if R is. For antisymmetry, suppose that
(a,b) € R7! and @ # b. Then (b,a) € R, so (a,b) ¢ R, whence (b,a) ¢ R™!. Finally, if (a,b) € R~ and
(b,e) € R, then (b,a) € R and (¢,b) € R, so (¢,a) € R (since R is transitive), and therefore (a,¢) € R™1;
thus R™! is transitive.

13. Find the duals of these posets.
a) ({0,1,2}), =) b) (Z,=)
¢) (P(Z).2) d) (Z7,])

13. The dual of & poset is the poset with the same underlying set and with the relation defined by declaring a
related to b if and only if b = a in the given poset.
a) The dual relation to < is >, so the dual poset is ({0,1,2},>). Explicitly it is the set {(0,0),(1,0), (1,1},
(2,0),(2,1),(2,2)}.
b) The dual relation to > is <, so the dual poset is (Z, <).
¢) The dual relation to 2 is C, so the dual poset is (P(Z),C).
d) There is no symbol generally used for the “is a multiple of” relation, which is the dual to the “divides”
relation in this part of the exercise. If we let R be the relation such that aRb if and only if b|a, then the
answer can be written (Z*,R).

14. Which of these pairs of elements are comparable in the
poset (Z7, |)?
a) 5,15 b) 6,9 c) 8, 16 d) 7.7

14. a) These are comparable, since 5| 15.
b) These are not comparable since neither divides the other.
¢) These are comparable, since 8 | 16.

d) These are comparable, since 7| 7.

—
tn

. Find two incomparable elements in these posets.
a) (P({0,1,2]), ©) by ({1.2.4,6.8}.])

15. We need to find elements such that the relation holds in neither direction between them. The answers we give
are not the only ones possible.

a) One such pair is {1} and {2}. These are both subsets of {0.1,2}, so they are in the poset, but neither is
a subset of the other.
b) Neither 6 nor & divides the other, so they are incomparable.



16. Let § = {1, 2, 3, 4). With respect to the lexicographic or-
der based on the usual *less than™ relation,

a) find all pairs in § x § less than (2, 3).
b) find all pairs in § x § greater than (3, 1).
¢) draw the Hasse diagram of the poset (§ x §, =).

16. a) We need either a number less than 2 in the first coordinate, or a 2 in the first coordinate and a number
less than 3 in the second coordinate. Therefore the answer is (1,1), (1,2), (1,3), (1,4), (2,1), and (2,2).
b) We need either a number greater than 3 in the first coordinate, or a 3 in the first coordinate and a number
greater than 1 in the second coordinate. Therefore the answer is (4,1), (4.2), (4,3), (4,4), (3,2), (3,3),
and (3,4).
c) The Hasse diagram is a straight line with 16 points on it, since this is a total order. The pair (4,4) is at
the top, (4,3) beneath it, (4,2) beneath that, and so on, with (1,1) at the bottom. To save space, we will

not actually draw this picture.

17. Find the lexicographic ordering of these n-tuples:
a) (1,1.2),(1,2, 1) b) (0,1,2,3),(0,1,3,2)
¢ (1,0.1,0,1),(0,1,1,1,0)

17. We find the first coordinate (from left to right) at which the tuples differ and place first the tuple with the
smaller value in that coordinate.
a) Since 1 =1 in the first coordinate, but 1 < 2 in the second coordinate, (1,1,2) < (1,2,1).
b) The first two coordinates agree, but 2 < 3 in the third, so (0,1,2,3) < (0,1, 3,2).
¢) Since 0 < 1 in the first coordinate, (0,1,1,1,0} < (1,0,1,0,1).

18. Find the lexicographic ordering of these strings of lower-
case English letters:
a) guack, quick, quicksilver, quicksand, quacking
b) open, apener, opera, operand, apened
¢) zoo, zero, zoom, zoology, zoological

18. a) The string quack comes first, since it is an initial substring of quacking, which comes next (since the other
three strings all begin gui, not qua). Similarly, these last three strings are in the order quick, guicksand,
quicksilver .

b) The order is open, opened, opener, opera, operand.

¢) The order is zero. zoo. zoological, zoology, zoom.




19. Find the lexicographic ordering of the bit strings 0, 01,
11,001,010, 011, 0001, and 0101 based on the ordering
0=1

19. All the strings that begin with 0 precede all those that begin with 1. The 0 comes first. Next comes 0001,
which begins with three (s, then 001, which begins with two 0's. Among the strings that begin 01, the order
is 01 < 010 < 0101 < 011. Putting this all together, we have 0 < 0001 < 001 < 01 < 010 < 0101 < 011 < 11.

20. Draw the Hasse diagram for the “greater than or equal to”
relation on {0, 1, 2, 3, 4, 5}.

20. The Hasse diagram for this total order is a straight line, as shown, with 0 at the top (it is the “largest”
element under the “is greater than or equal to” relation) and 5 at the bottom.

n B B = O

21. Draw the Hasse diagram for the “less than or equal to”
relation on {0, 2, 5, 10, 11, 15}.

21. This is a totally ordered set, so the Hasse diagram is linear.

15
11

10
5

2
0




22, Draw the Hasse diagram for divisibility on the set
a) {1,2,3.4.5,6). b) {3,5,7, 11,13, 16, 17}.
c) {2,3,5,10,11,15,25}. d) {1.3,9,27, 81, 243}.

22, In each case we put a above b and draw a line between them if b|a but there is no element ¢ other than a
and b such that b|e and c|a.

a) Note that 1 divides all numbers, so the numbers on the second level from the bottom are the primes.

6

b) In this case these numbers are pairwise relatively prime, so there are no lines in the Hasse diagram.

® [ . L] * L L
3 2 7 11 13 16 17

¢) Note that we can place the points as we wish, as long as a is above b when b|a.

23

d) In this case these numbers each divide the next, so the Hasse diagram is a straight line.

243
g1
27
9

3

1




23, Draw the Hasse diagram for divisibility on the set
a) {1,2,3,4,5,6,7,8). b) {1.2,3,5,7,11, 13}
c) {1.2,3,6,12, 24, 36,48}
d) {1.2,4,8, 16,32, 64}.

23. We put x above y if y divides . We draw a line between x and y, where y divides x, if there is no number
# in our set, other than = or y, such that y|z A z|z. Note that in part (b) the numbers other than 1 are
all (relatively) prime, so the Hasse diagram is short and wide, whereas in part (d) the numbers all divide one
another, so the Hasse diagram is tall and narrow.

8
4 6
XL Wﬁ
1 1
®)

(a)
64
48
32
24 36 16
12 8
=]
4
2 3
2
1 1
(c) (d)

24, Draw the Hasse diagram for inclusion on the set P(S),
where § = {a, b, ¢, d}.

24. This picture is a four-dimensional cube. We draw the sets with k elements at level k: the empty set at level 0
(the bottom), the entire set at level 4 (the top).




In Exercises 25-27 list all ordered pairs in the partial ordering d)
with the accompanying Hasse diagram. €)

25, 26. f)
d € d
g)

b h)
b c 34, A

18

a a)

27. b)

[

=%
]
~

)

g d)

€)

b a « )

25. We need to include every pair (z,y) for which we can find a path going upward in the diagram from = to y.
We also need to include all the reflexive pairs (z,z). Therefore the relation is the following set of pairs:

{{a,a), (a,b), (a,c), (a,d), (b,b), (b, c),{b,d), (e, e), (d,d)}.

26. The procedure is the same as in Exercise 25: {(a.a).(a,b). (a,c). (a,d), (a,e). (b, b). (b, d), (b.e).(c, ), (c.d).
(d.d). (e.€))

27. The procedure is the same as in Exercise 25: {(a,a),(a,d),(a,¢€),(a, f), (a,g),(b,b), (b, d), (b, e), (b, f), (b, g),
(c,c)s (e, d), (cve), (e, £), (e, ), (d, d), (e e), (f. f), (g,d),(g,€), (g, f). (9. 9)}

28. What is the covering relation of the partial ordering
{{a, b) | a divides b} on {1, 2,3, 4,6, 12}?

28. In this problem a = b when a|b. For (a,b) to be in the covering relation, we need a to be a proper divisor
of b but we also must have no element in our set {1, 2, 3, 4, 6, 12} being a proper multiple of a and a proper
divisor of b. For example, (2,12} is not in the covering relation, since 2|6 and 6| 12. With this understanding
it is easy to list the pairs in the covering relation: (1.2), (1.3), (2.4), (2.6), (3,6). (4,12),and (6.12).




29, What is the covering relation of the partial order-

29.

ing {(A,B)| AC B} on the power set of §, where
§=la,b,c}?

In this problem X <Y when X C VY. For (X,Y) to be in the covering relation, we need X to be a proper
subset of ¥ but we also must have no subset strictly between X and Y. For example, ({a},{a,b,c}) is
not in the covering relation, since {a} C {a,b} and {a,b} C {a,b,c}. With this understanding it is easy to
list the pairs in the covering relation: (@, {a}), (@, {b}), (D.{c}), ({a},{a,b}), ({a},{a,c}), ({b}.{a.b}),
({} {b,c}), ek {ach)y ek {bie}), ({a, b}, {a, b c}), ({a,c} {a, b, e}), and ({b,c},{a,b,c}).

d)
€)
f)

o)
h)

32.

. Answer these questions for the partial order represented

by this Hasse diagram.

! "

J k

i h e

d € f
a b c

a) Find the maximal elements.
b) Find the minimal elements.

c) Is there a greatest element?

Is there a least element?

Find all upper bounds of {a, b, c}.

Find the least upper bound of {a, b, c}, if it exists.
Find all lower bounds of { f, g, h}.

Find the greatest lower bound of { f, g, h}, if it exists.

a) The maximal elements are the ones with no other elements above them, namely ! and m.

b) The minimal elements are the ones with no other elements below them, namely a, b, and .

¢) There is no greatest element, since neither ! nor m is greater than the other.

d) There is no least element, since neither a nor b is less than the other.

e) We need to find elements from which we can find downward paths to all of a, b, and e. It is clear that k.,
I, and m are the elements fitting this description.

f) Since k is less than both [ and m, it is the least upper bound of a, b, and ¢.

g) No element is less than both f and h, so there are no lower bounds.

h) Since there are no lower bounds, there can be no greatest lower bound.




33, Answer these questions for the poset ({3,3,9, 15,
24, 45}, ).

a) Find the maximal elements.

b) Find the minimal elements.

¢) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {3, 5}.

f) Find the least upper bound of {3, 5}, if it exists.

g) Find all lower bounds of {15, 45}.

h) Find the greatest lower bound of {15, 45}. if it exists.

33. It is helpful in this exercise to draw the Hasse diagram.

a) Maximal elements are those that do not divide any other elements of the set. In this case 24 and 45 are
the only numbers that meet that requirement.

b} Minimal elements are those that are not divisible by any other elements of the set. In this case 3 and 5
are the only numbers that meet that requirement.

c) A greatest element would be one that all the other elements divide. The only two candidates (maximal
clements) are 24 and 45, and since neither divides the other, we conclude that there is no greatest element.
d) A least element would be one that divides all the other elements. The only two candidates (minimal
elements) are 3 and 5, and since neither divides the other, we conclude that there is no least element,

e) We want to find all elements that both 3 and 5 divide. Clearly only 15 and 45 meet this requirement.
f) The least upper bound is 15 since it divides 45 (see part (e)).

g) We want to find all elements that divide both 15 and 45. Clearly only 3, 5, and 15 meet this requirement.
h) The number 15 is the greatest lower bound, since both 3 and 5 divide it (see part (g)).




34. Answer these questions for the poset ({2,4,6,9, 12,
18, 27, 36, 48, 60,72}, ).

a)
h)
c)
d)
€)
f)

g)
h)

34.

Find the maximal elements.

Find the minimal elements.

Is there a greatest element?

Is there a least element?

Find all upper bounds of {2, 9}.

Find the least upper bound of {2, 9}, if it exists.

Find all lower bounds of {60, 72}.

Find the greatest lower bound of {60, 72}, if it exists.

The reader should draw the Hasse diagram to aid in answering these questions.

a) Clearly the numbers 27, 48, 60, and 72 are maximal, since each divides no number in the list other than
itself. All of the other numbers divide 72, however, so they are not maximal.

b) Ouly 2 and 9 are minimal. Every other element is divisible by either 2 or 9.

¢) There is no greatest element, since, for example, there is no number in the set that both 60 and 72 divide.
d) There is no least element, since there is no number in the set that divides both 2 and 9.

e) We need to find numbers in the list that are multiples of both 2 and 9. Clearly 18, 36, and 72 are the
mimbers we are looking for.

f) Of the numbers we found in the previous part, 18 satisfies the definition of the least upper bound, since it
divides the other two upper bounds.

g) We need to find numbers in the list that are divisors of both 60 and 72. Clearly 2, 4, 6, and 12 are the
numbers we are looking for.

h) Of the numbers we found in the previous part, 12 satisfies the definition of the greatest lower hound, since
the other three lower bounds divide it.
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Answer these questions for the poset ({{1}, {2}, {4},
(1.2), {14}, (2.4}, (3.4). (1.3.4}. (2.3.4)}. ©).

a) Find the maximal elements.

b) Find the minimal elements.

¢) Isthere a greatest element?

d) Isthere a least element?

e) Find all upper bounds of {{2}. {4}}.

f) Find the least upper bound of {{2}, {4}], if it exists.
g) Find all lower bounds of {{1, 3, 4}, {2, 3, 4}}.

h) Find the greatest lower bound of {{1, 3,4}, {2, 3, 4}},
if it exists.

35. To help us answer the questions, we will draw the Hasse diagram, with the commas and braces eliminated in

the labels, for readability.

YN
RaVa\)

a) The maximal elements are the ones without any elements lying above them in the Hasse diagram, namely
{1,2}, {1,3,4}, and {2,3,4}.

b) The minimal elements are the ones without any elements lying below them in the Hasse diagram, namely
{1}, {2}, and {4}.

¢} There is no greatest element, since there is more than one maximal element, none of which is greater than
the others.

d) There is no least element, since there is more than one minimal element, none of which is less than the
others.

e) The upper bounds are the sets containing both {2} and {4} as subsets, i.e., the sets containing hoth 2
and 4 as elements. Pictorially, these are the elements lying above both {2} and {4} (in the sense of there
being a path in the diagram), namely {2,4} and {2,3,4}.

f) The least upper bound is an upper bound that is less than every other upper bound. We found the upper
bounds in part (e), and since {2,4} is less than (i.e., a subset of) {2,3,4}, we conclude that {2,4} is the
least upper bound.

g) To be a lower bound of both {1,3,4} and {2,3,4}, a set must be a subset of each, and so must be a subset
of their intersection, {3,4}. There are only two such subsets in our poset, namely {3,4} and {4}. Iu the
diagram, these are the points which lie below (in the path sense) both {1,3,4} and {2,3,4}.

h) The greatest lower bound is a lower bound that is greater than every other lower bound. We found the
lower bounds in part (g), and since {3,4} is greater than (i.e., a superset of) {4}, we conclude that {3,4} is
the greatest lower bound.




36. Give a poset that has
a) a minimal element but no maximal element.

b) a maximal element but no minimal element.

¢) neither a maximal nor a minimal element.

36. a) One example is the natural numbers under “is less than or equal to.” Here 1 is the (only) minimal element,
and there are no maximal elements,
b) Dual to part (a), the answer is the natural numbers under “is greater than or equal to.”
¢) Combining the answers for the first two parts, we look at the set of integers under “is less than or equal

to.” Clearly there are no maximal or minimal elements.

43. Determine whether the posets with these Hasse diagrams
are lattices.

a) b) c)
£ h i
f r g h
d e d . £
€
b C b c
b c
a
a

a

43. In each case, we need to check whether every pair of elements has both a least upper bound and a greatest
lower bound.
a) This is a lattice. If we want to find the Lu.b. or g.L.b. of two elements in the same vertical column of the
Hasse diagram, then we simply take the higher or lower {respectively) element. If the elements are in different
columns, then to find the g.lb. we follow the diagonal line upward from the element on the left, and then
continue upward on the right, if necessary to reach the element on the right. For example, the Lu.b. of d and
¢ is f:and the Lub. of 2 and e is . Finding greatest lower bounds in this poset is similar.
b) This is not a lattice. Elements b and ¢ have f, g, and h as upper bounds, but none of them is a Lu.b.
¢) This is a lattice. By considering all the pairs of elements, we can verify that every pair of them has a Lu.b.
and a g.l.b. For example, b and e have g and a filling these roles, respectively.




44. Determine whether these posets are lattices.
a) ({1,3.6,9.12}. D b) ({1,5,25,125}, )
¢) (£,z)
d) (P(S), 2), where P(S) is the power set of a set §

44. In each case, we need to decide whether every pair of elements has a least upper bound and a greatest lower
bound.
a) This is not a lattice, since the elements 6 and 9 have no upper bound (no element in our set is a multiple
of both of them).
b) This is a lattice; in fact it is a linear order, since each element in the list divides the next one. The least
upper bound of two numbers in the list is the larger, and the greatest lower bound is the smaller.
¢) Again, this is a lattice because it is a linear order. The least upper bound of two numbers in the list is the
smaller number (since here “greater” really means “less”!), and the greatest lower bound is the larger of the
two numbers.

d) This is similar to Example 24, with the roles of subset and superset reversed. Here the g.l.b. of two subsets

A and B is AU B, and their Lu.b. is AN B.

47. Inacompany. the lattice model of information flow is used
to control sensitive information with security classes rep-
resented by ordered pairs (A, C). Here A is an authority
level, which may be nonproprietary (0), proprietary (1),
restricted (2), or registered (3). A category C is a subset of
the set of all projects {Cheetah, Impala, Puma}. (Names 4
of animals are often used as code names for projects in
companies.)

a) Is information permitted to flow from (Proprietary,
{Cheetah, Pumay)) into (Restricted, {Puma})?

b) Is information permitted to flow from (Restricted,
{Cheetah}) into (Registered, {Cheetah, Impala})?

¢) Into which classes is information from (Proprietary,
{Cheetah, Pumal}) permitted to flow?

d) From which classes is information permitted to flow
into the security class (Restricted, {Impala, Puma})?

47. The needed definitions are in Example 25.

a) No. The authority level of the first pair (1) is less than or equal to (less than, in this case) that of the
second (2); but the subset of the first pair is not a subset of that of the second.

b) Yes. The authority level of the first pair (2) is less than or equal to (less than, in this case) that of the
second (3); and the subset of the first pair is a subset of that of the second.

c¢) The classes into which information can flow are those classes whose authority level is at least as high as
Proprietary, and whose subset is a superset of {Cheetah, Puma}. We can list these classes: (Proprietary,
{ Cheetah, Pumma}), (Restricted,{Cheetah, Puma}), (Registered,{Cheetah, Puma}), (Proprietary, { Cheetah,
Puma, Impala}). (Restricted, { Cheetah, Puma, Impala}), and (Reqstered, { Cheetah, Puma, Impala}).

d) The classes from which information can flow are those classes whose authority level is at least as low
as Restricted, and whose subset is a subset of {Impala, Puma}, namely (Nonproprietary,{Impala,Puma}),
(Proprietary,{ Impala,Puma}}, (Restricted,{Impala,Puma}l}, (Nonproprietary.{Impala}), (Proprietary,
{Irmpala}), (Restricted,{Impala}), (Nonproprietary,{ Puma}l), (Proprictary { Puma}}, (Restricted { Puma}},
(Nonproprietary,®), (Proprietary,®), and (Restricted ().



50. Show that every totally ordered set is a lattice.

51. Show that every finite lattice has a least element and a
ereatest element.

50. This issue was already dealt with in our solution to Exercise 44, parts (b) and (c). If (5, <) is a total (linear)

order, then the least upper bound of two elements is the larger one, and their greatest lower bound is the
smaller.

51. This follows immediately from Exercise 45. To be more specific, according to Exercise 45, there is a least

upper hound (respectively, a greatest lower bound) for the entire finite lattice. This element is by definition
a greatest element (respectively, a least element).

52. Give an example of an infinite lattice with
a) neither a least nor a greatest element.
b) aleast but not a greatest element.
¢) a greatest but not a least element.

d) both a least and a greatest element.

52. By Exercise 50. we can try to choose our examples from among total orders, such as subsets of Z under <.

a) (£,<) b) (Z7.<) c) (Z7,<), where Z~ is the set of negative integers d) ({1}, <)

62. Find a compatible total order for the divisibility relation
onthe set {1, 2,3,6,8, 12, 24, 36}.

62. Since a larger number can never divide a smaller one, the “is less than or equal to” relation on any set is a
compatible total order for the divisibility relation. This gives 1 <; 2 <; 3 <; 6 <; 8 =<, 12 =; 24 <; 36.

63. Find all compatible total orderings for the poset
({1,2,4,5,12, 20}, |} from Example 26.

63. Clearly 1 must come first, and 20 must follow each element except possibly 12. The relative positions of
2, 4, and 12 are fixed. The 5 can go anywhere, as long as it lies between 1 and 20. Following these
guidelines, we see that the following seven total orderings are the ones compatible with the given relation:
1<5=<2<4=<12=<20,1<2<5<4=<12=<20,1=<2<4<5=<12=<20,1<2=<4<12=5=<20,
1<5<2<4<20<12,1<92<5<4<20=<12,1<2<4<5<20=<12.




