10.1

The examples and exercises give a good picture of the ways in which graphs can model various real world
applications. In constructing graph models you need to determine what the vertices will represent, what the
edges will represent, whether the edges will be directed or undirected, whether loops should be allowed, and
whether a simple graph or multigraph is more appropriate.

1. Draw graph models, stating the type of graph (from Ta-
ble 1) used, to represent airline routes where every day
there are four flights from Boston to Newark, two flights
from Newark to Boston, three flights from Newark to Mi-
ami, two flights from Miami to Newark, one flight from
Newark to Detroit, two flights from Detroit to Newark,
three flights from Newark to Washington, two flights from
Washington to Newark, and one flight from Washington
to Miami, with
a) anedge between vertices representing cities that have

a flight between them (in either direction). o . )
plus a loop for a special sightseeing trip that takes off

and lands in Miami.
d) anedge from a vertex representing a city where a flight
starts to the vertex representing the city where it ends.
e) an edge for each flight from a vertex representing a
city where the flight begins to the vertex representing
the city where the flight ends.

b) an edge between vertices representing cities for each
flight that operates between them (in either direction).

¢) an edge between vertices representing cities for each
flight that operates between them (in either direction),

1. In part (a) we have a simple graph, with undirected edges, no loops or multiple edges. In part (b) we have a
multigraph, since there are multiple edges (making the figure somewhat less than ideal visually). In part (¢) we
have the same picture as in part (b) except that there is now a loop at one vertex; thus this is a pseudograph.
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(a) (b) (c)

In part (d) we have a directed graph, the directions of the edges telling the directions of the flights; note that
the antiparallel edges (pairs of the form (w,v) and (v, )) are not parallel. In part (e) we have a directed
multigraph, since there are parallel edges.
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2. What kind of graph (from Table 1) can be used to model

a highway system between major cities where

a) there is an edge between the vertices representing
cities if there is an interstate highway between them?

b) there is an edge between the vertices representing
cities for each interstate highway between them?

c¢) there is an edge between the vertices representing
cities for each interstate highway between them, and
there is a loop at the vertex representing a city if there
is an interstate highway that circles this city?

2. a) A simple graph would be the model here, since there are no parallel edges or loops, and the edges are
undirected.
b) A multigraph would, in theory, be needed here, since there may be more than one interstate highway
between the same pair of cities.

c) A pseudograph is needed here, to allow for loops.




For Exercises 3-9, determine whether the graph shown has
directed or undirected edges, whether it has multiple edges,
and whether it has one or more loops. Use your answers to
determine the type of graph in Table 1 this graph is.
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3. This is a simple graph; the edges are undirected, and there are no parallel edges or loops.

4. This is a multigraph; the edges are undirected, and there are no loops, but there are parallel edges.

5. This is a psendograph; the edges are undirected, but there are loops and parallel edges.

6. This 15 a multigraph; the edges are undirected, and there are no loops, but there are parallel edges.

7. This is a directed graph; the edges are directed, but there are no parallel edges. (Loops and antiparallel

edges—see the solution to Exercise 1d for a definition—are allowed in a directed graph.)

8. This 1s a directed multigraph; the edges are directed, and there are parallel edges.

9. This is a directed multigraph; the edges are directed, and there is a set of parallel edges.



10. For each undirected graph in Exercises 3-9 that is not
simple, find a set of edges to remove to make it simple.

10. The graph in Exercise 3 is simple. The multigraph in Exercise 4 can be made simple by removing one of the
edges between @ and b, and two of the edges between b and d. The psendograph in Exercise 5 can be made
simple by removing the three loops and one edge in each of the three pairs of parallel edges. The multigraph
in Exercise 6 can be made simple by removing one of the edges between a and ¢, and one of the edges between
b and d. The other three are not undirected graphs. (Of course removing any supersets of the answers given
here are equally valid answers; in particular, we could remove all the edges in each case.)

11. Let G be a simple graph. Show that the relation R on the
set of vertices of G such that uRv if and only if there
is an edge associated to {u, v} is a symmetric, irreflexive
relation on G.

11. In a simple graph, edges are undirected. To show that R is symmetric we must show that if uRv, then vRu.
If wRv, then there is an edge associated with {u,v}. But {u,v} = {v,u}, so this edge is associated with
{v,u} and therefore vRu. A simple graph does not allow loops; that is if there is an edge associated with
{u,v}, then u # v. Thus uRu never holds, and so by definition R is irreflexive.

12. Let G be an undirected graph with a loop at every vertex.
Show that the relation R on the set of vertices of & such
that u Rv if and only if there is an edge associated to {u, v}
is a symmetric, reflexive relation on G.

12, If w Rv, then there is an edge joining vertices u and v, and since the graph is undirected, this is also an edge
jommng vertices v and u. This means that v Ru. Thus the relation i1s symmetric. The relation 1s reflexive
because the loops guarantee that u Ru for each vertex w.




13. The intersection graph of a collection of sets Aj,
Az, ..., Ay isthe graph that has a vertex for each of these
sets and has an edge connecting the vertices representing
two sets if these sets have a nonempty intersection. Con-
struct the intersection graph of these collections of sets.

a) Ay =1{0,2,.4,6,8}, A, =1{0,1,2,3,4},
A3=1{1,3,5,7.9}, A4 =1{5,6,7.8,9},

s =1{0,1,8,9}

b) Ay ={....—4,—3,-2,—1,0},
Ax=1[...,-2,-1,0,1,2,...},
Az={[...,—-6,—-4,-2,0,2,4,6,...},
Ag=1{....—5 -3,-1,1,3,5,..].
As={....,—6,-3,0,3.6,...}

¢) Aj =[x |x =0},
Arx =[x | -1 <=x <0},
Ay={x |0 =x < 1},
Ag=[x]| -1 =x =1},
As={(x|x>—1},
As=R

13. In each case we draw a picture of the graph in question. All are simple graphs. An edge is drawn between two
vertices if the sets for the two vertices have at least one element in common. For example, in part {a) there
is an edge between vertices A; and A, because there is at least one element common to 4, and As (in fact

there are three such elements). There is no edge between A; and Az since A; N Az =@.

A
2 Ag Ao

14. Use the niche overlap graph in Figure 11 to determine the
species that compete with hawks.

14. Since there are edges from Hawk to Crow, Owl, and Raccoon, the graph is telling us that the hawk competes

with these three animals.




15. Construct a niche overlap graph for six species of birds,
where the hermit thrush competes with the robin and
with the blue jay, the robin also competes with the
mockingbird, the mockingbird also competes with the
blue jay, and the nuthatch competes with the hairy wood-
pecker.

15. We draw a picture of the graph in question, which is a simple graph. Two vertices are joined by an edge if
we are told that the species compete (such as robin and mockingbird) but there is no edge between pairs of
species that are not given as competitors (such as robin and blue jay).

robin: :blue Jay
hermit thrush mockingbird

nuthatch &——e hairy woodpecker

16. Draw the acquaintanceship graph that represents that Tom
and Patricia, Tom and Hope, Tom and Sandy, Tom and
Amy, Tom and Marika, Jeff and Patricia, Jeff and Mary,
Patricia and Hope, Amy and Hope, and Amy and Marika
know each other, but none of the other pairs of people
listed know each other.

16. Each person is represented by a vertex, with an edge between two vertices if and only if the people are

acquainted.
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17. We can use a graph to represent whether two people were
alive at the same time. Draw such a graph to represent
whether each pair of the mathematicians and computer
scientists with biographies in the first five chapters of
this book who died before 1900 were contemporaneous.
(Assume two people lived at the same time if they were
alive during the same year.)

17. Here are the persons to be included, listed in order of birth year: Aristotle (384-322 B.C.E.), Euclid (325-265
B.C.E.), Eratosthenes (276-194 B.C.E.), al-Khowarizmi (780-850}), Fibonacei (1170-1250), Maurolico (1494~
1575), Mersenne (1588 -1648), Descartes (1596-1650), Fermat (1601-1665), Goldbach (1690-1764), Stirling
(1692-1770), Bézout {1730-1783), Gauss (1777-1855), Lamé (1795-1870), De Morgan {1806-1871), Lovelace
(1815-1852), Boole (1815-1864), and Dodgson (1832-1898). We draw the graph by connecting two people if
their date ranges overlap. Note that there is a complete subgraph (see Section 10.2) consisting of the last six
people listed. A few of the vertices are isolated (again see Section 10.2). In all our graph has 17 vertices and
22 edges. A graph like this is called an interval graph, since each vertex can be associated with an interval
of real numbers; it is a special case of an intersection graph, where two vertices are adjacent if the sets
associated with those vertices have a nonempty intersection (see Exercise 13).

Lame Goldbach

Fermat Descartes
Bézout
Stirling
Mersenne
De Morgan Gauss
Aristotle Euclid Eratosthenes
Fibonacci * i
Maurolico Lovelace Dodgson
-
al-Khowarizmi Boole

18. Who can influence Fred and whom can Fred influence in
the influence graph in Example 27

18. Fred influences Brian, since there is an edge from Fred to Brian. Yvonne and Deborah influence Fred, since

there are edges from these vertices to Fred.




19. Construct an influence graph for the board members of a
company if the President can influence the Director of Re-
search and Development, the Director of Marketing, and
the Director of Operations: the Director of Research and
Development can influence the Director of Operations;
the Director of Marketing can influence the Director of
Operations; and no one can influence, or be influenced
by, the Chief Financial Officer.

19. We draw a picture of the graph in question, which is a directed graph. We draw an edge from u to v if we
are told that u can influence v. For instance the Chief Financial Officer is an isolated vertex since she is
influenced by no one and influences no one.

Chief Fin. Off
L

Dr Dpers.?l ?pPres.
Dir Mrkt. Dir R&D

20. Which other teams did Team 4 beat and which teams beat
Team 4 in the round-robin tournament represented by the
graph in Figure 137

20. Team four beat the vertices to which there are edges from Team four, namely only Team three. The other

teams—Team one, Team two, Team five, and Team six—all beat Team four, since there are edges from them
to Team four.

21. Inaround-robin tournament the Tigers beat the Blue Jays,
the Tigers beat the Cardinals, the Tigers beat the Orioles,
the Blue Jays beat the Cardinals, the Blue Jays beat the
Orioles, and the Cardinals beat the Orioles. Model this
outcome with a directed graph.

21. We draw a picture of the graph in question, which is a directed graph. We draw an edge from u to v if we
are told that u beat v.

Tigers g—>— Blue Jays

b -

Orioles < Cardinals




22, Construct the call graph for a set of seven telephone
numbers 555-0011, 555-1221, 555-1333, 555-8B88,
555-2222, 555-0091, and 555-1200 if there were three
calls from 555-0011 to 555-8888 and two calls from
555-B888 to 555-0011, two calls from 555-2222 to
555-0091, two calls from 555-1221 to each of the
other numbers, and one call from 555-1333 to each of
555-0011, 555-1221, and 555-1200.

22, This is a directed multigraph with one edge from a to b for each call made by a to b. Rather than draw
the parallel edges with parallel lines, we have indicated what is intended by writing a numeral on the edge to
indicate how many calls were made, if it was more than one.
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23. Explain how the two telephone call graphs for calls made
during the month of January and calls made during the
month of February can be used to determine the new tele-
phone numbers of people who have changed their tele-
phone numbers.

23. We could compile a list of phone numbers (the labels on the vertices) in the February call graph that were
not present in January, and a list of the January numbers missing in February. For each number in each list,
we could make a list of the numbers they called or were called by, using the edges in the call graphs. Then we
could look for February lists that were very similar to January lists. If we found a new February number that
had almost the same calling pattern as a defunct January number, then we might suspect that these numbers

belonged to the same person, who had recently changed his or her number.

24. a) Explain how graphs can be used to model electronic
mail messages in a network. Should the edges be di-
rected or undirected? Should multiple edges be al-
lowed? Should loops be allowed?

b) Describe a graph that models the electronic mail sent
in a network in a particular week.

24, This is similar to the use of directed graphs to model telephone calls.
a) We can have a vertex for each mailbox or e-mail address in the network, with a directed edge between two
vertices if a message is sent from the tail of the edge to the head.

b) As in part (a) we use a directed edge for each message sent during the week.



25, How can a graph that models e-mail messages sent in a
network be used to find people who have recently changed
their primary e-mail address?

25. For each e-mail address (the labels on the vertices), we could make a list of the other addresses they sent
messages to or received messages from. If we see two addresses that had almost the same communication
pattern, then we might suspect that these addresses belonged to the same person, who had recently changed

his or her e-mail address.

26. How can a graph that models e-mail messages sent in
a network be used to find electronic mail mailing lists
used to send the same message to many different e-mail
addresses?

26. Vertices with thousands or millions of edges going out from them could be the senders of such mass mailings.
The collection of heads of these edges would be the mailing lists themselves.

27. Describe a graph model that represents whether each per-
son at a party knows the name of each other person at the
party. Should the edges be directed or undirected? Should
multiple edges be allowed? Should loops be allowed?

27. The vertices represent the people at the party. Because it is possible that a knows b's name but not vice
versa, we need a directed graph. We will include an edge associated with (u,v) if and only if © knows v's
name. There is no need for multiple edges (either @ knows b’s name or he doesn’t). One could argue that
we should not clutter the model with loops, because obviously everyone knows her own name. On the other

hand, it certainly would not be wrong to include loops, especially if we took the instructions literally.

28. Describe a graph model that represents a subway system
in a large city. Should edges be directed or undirected?
Should multiple edges be allowed? Should loops be al-
lowed?

28. We make the subway stations the vertices, with an edge from station u to station v if there is a train going
from u to v without stopping. It is quite possible that some segments are one-way, so we should use directed
edges. (If there are no one-way segments, then we could use undirected edges.) There would be no need for
multiple edges, unless we had two kinds of edges, maybe with different colors, to represent local and express
trains. In that case, there could be parallel edges of different colors between the same vertices, because both a
local and an express train might travel the same segment. There would be no point in having loops, beeause
no passenger would want to travel from a station back to the same station without stopping.



29, For each course at a university, there may be one or more
other courses that are its prerequisites. How can a graph
be used to model these courses and which courses are pre-
requisites for which courses? Should edges be directed or
undirected? Looking at the graph model, how can we find
courses that do not have any prerequisites and how can
we find courses that are not the prerequisite for any other
courses?

29, We should use a directed graph, with the vertices being the courses and the edges showing the prerequisite
relationship. Specifically, an edge from w to v means that course % is a prerequisite for course v. Courses
that do not have any prerequisites are the courses with in-degree 0, and courses that are not the prerequisite
for any other courses have out-degree 0. An interesting question would be how to model courses that are
co-requisites (in two different senses—either courses u and v must be taken at the same time, or course u
must be taken before course v or in the same semester as course v).

30. Describe a graph model that represents the positive rec-
ommendations of movie critics, using vertices to repre-

sent both these critics and all movies that are currently
being shown.

30. A bipartite graph (this terminology is introduced in the next section) works well here. There are two types
of vertices—one type representing the critics and one type representing the movies. There is an edge between
vertex ¢ (a critic vertex) and vertex m (a movie vertex) if and only if the critic represented by ¢ has positively
recommended the movie represented by m. There are no edges between critic vertices and there are no edges
between movie vertices.

31. Describe a graph model that represents traditional mar-
riages between men and women. Does this graph have
any special properties?

31, For this to be interesting, we want the graph to model all marriages, not just ones that are currently active.
(In the latter case, for the Western world, there would be at most one edge incident to each vertex.) So we
let the set of vertices be a set of people (for example, all the people in North America who lived at any point
in the 20th century), and two vertices are joined by an edge if the two people were ever married. Since laws
in the 20th century allowed only marriages between persons of the opposite sex, and ignoring complications
caused by sex-change operations, we note that this graph has the property that there are two types of vertices
(men and women), and every edge joins vertices of opposite types. In the next section we learn that the word
used to describe a graph like this is bipartite.




32. Which statements must be executed before Sg is executed
in the program in Example 87 (Use the precedence graph
in Figure 10.)

32. The model says that the statements for which there are edges to Sg must be executed before Sg, namely the
statements S;, Sz, S3, and S;.

33. Construct a precedence graph for the following program:

Siix:=0
Srix=x+1
S:yvi=2
S1:z: =y
Ssixi=x+2
Se:y =x+z
S1:z:=

33. We draw a picture of the directed graph in question. There is an edge from u to v if the assignment made
in u can possibly influence the assignment made in v. For example, there is an edge from S3 to Sg, since
the assignment in S; changes the value of y, which then influences the value of z (in 5;) and hence has a

bearing on Sg. We assume that the statements are to be executed in the given order, so, for example, we do
not draw an edge from S5 to Ss.

S S g
1 '_‘% N 5
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34. Describe a discrete structure based on a graph that can
be used to model airline routes and their flight times.
[Hint: Add structure to a directed graph.]

34. The vertices in the directed graph represent cities. Whenever there is a nonstop flight from city A to city B,
we put a directed edge into our directed graph from vertex A to vertex B, and furthermore we label that
edge with the flight time. Let us see how to incorporate this into the mathematical definition. Let us call
such a thing a directed graph with weighted edges. It is defined to be a triple (V, E, W), where (V,E) is
a directed graph (i.e., V is a set of vertices and E is a set of ordered pairs of elements of V') and W is a
function from E to the set of nonnegative real numbers. Here we are simply thinking of W(e) as the weight
of edge e, which in this case is the flight time.



SECTION 10.2 Graph Terminology and Special Types of Graphs

Graph theory is sometimes jokingly called the “theory of definitions,” because so many terms can be—and
have been—defined for graphs. A few of the most important concepts are given in this section; others appear
in the rest of this chapter and the next, in the exposition and in the exercises. As usual with definitions,
it i1s important to understand exactly what they are saying. You should construct some examples for each
definition you encounter—examples both of the thing being defined and of its absence. Some students find it
useful to build a dictionary as they read, including their examples along with the formal definitions.

The handshaking theorem (that the sum of the degrees of the vertices in a graph equals twice the number
of edges), although trivial to prove, is quite handy, as Exercise 55, for example, illustrates. Be sure to look
at Exercise 43, which deals with the problem of when a sequence of numbers can possibly be the degrees of
the vertices of a simple graph. Some interesting subtleties arise there, as you will discover when you try to
draw the graphs. Many arguments in graph theory tend to be rather ad hoc, really getting down to the nitty
gritty, and Exercise 43c is a good example. Exercise 51 is really a combinatorial problem: such problems
abound in graph theory, and entire books have been written on counting graphs of various types. The notion
of complementary graph, introduced in Exercise 59, will appear again later in this chapter, so it would be
wise to look at the exercises dealing with it.

2.
In Exercises 1-3 find the number of vertices, the number of
edges, and the degree of each vertex in the given undirected
graph. Identify all isolated and pendant vertices.
1. a b c
¢ 3
‘ ° .
f € d f

1. There are 6 vertices here, and 6 edges. The degree of each vertex is the number of edges incident to it.
Thus deg(a) = 2, deg(b) = 4, deg(c) = 1 {and hence ¢ is pendant), deg(d) = 0 (and hence d is isolated),
deg(e) = 2, and deg(f) = 3. Note that the sum of the degrees is 2+ 4+ 1+ 0+ 2+ 3 = 12, which is twice
the number of edges.

2. In this pseudograph there are 5 vertices and 13 edges. The degree of vertex a is 6, since in addition to
the 4 nonloops incident to a, there is a loop contributing 2 to the degree. The degrees of the other vertices
are deg(b) = 6, deg(c) = 6, deg(d) = 5, and deg(e) = 3. There are no pendant or isolated vertices in this
pseudograph.

3. There are 9 wvertices here, and 12 edges. The degree of each vertex is the number of edges incident to it.
Thus deg(a) = 3, deg(b) = 2, deg(c) = 4, deg(d) = 0 (and hence d is isolated), deg(e) = 6, deg(f) =0
(and hence f is isolated), deg(g) = 4, deg(h) = 2, and deg(i) = 3. Note that the sum of the degrees is
3424+4404+6+0+4+4+2+3 =24, which is twice the number of edges.




4. Find the sum of the degrees of the vertices of each graph
in Exercises 1-3 and verify that it equals twice the number
of edges in the graph.

4. For the graph in Exercise 1, the sumis 24+4+1+4+04+2+43 = 12 = 2-6; there are 6 edges. For the pseudograph
in Exercise 2, the sum is 6 +6+6+5+3 = 26 = 2-13; there are 13 edges. For the psendograph in Exercise 3,
the sumis 3+24+44+04+6+0+4+2+3=24=2-12; there are 12 edges.

5. Can a simple graph exist with 15 vertices each of degree
five?

5. By Theorem 2 the number of vertices of odd degree must be even. Hence there cannot be a graph with 15
vertices of odd degree 5. (We assume that the problem was meant to imply that the graph contained only
these 15 vertices.)

6. Show that the sum, over the set of people at a party, of
the number of people a person has shaken hands with, is
even. Assume that no one shakes his or her own hand.

6. Model this problem by letting the vertices of a graph be the people at the party, with an edge between two
people if they shake hands. Then the degree of each vertex is the number of people the person that vertex
represents shakes hands with. By Theorem 1 the sum of the degrees is even (it is 2e).




In Exercises 7-9 determine the number of vertices and edges
and find the in-degree and out-degree of each vertex for the
given directed multigraph.

T. 7

7. This directed graph has 4 vertices and 7 edges. The in-degree of vertex a is deg™ (a) = 3 since there are
3 edges with a as their terminal vertex; its out-degree is deg™(a) = 1 since only the loop has a as its
initial vertex. Similarly we have deg (b) = 1, deg™ (b) = 2, deg (c) = 2, deg®(¢) = 1, deg (d) = 1, and
degt(d) = 3. As a check we see that the sum of the in-degrees and the sum of the out-degrees are equal (both
are equal to 7).

8. In this directed multigraph there are 4 vertices and 8 edges. The degrees are deg (a) = 2, deg™ (a) = 2,
deg™(b) =3, deg™(b) =4, deg (¢) =2, degt(¢) =1, deg (d) =1, and deg™(d) = 1.

9. This directed multigraph has 5 vertices and 13 edges. The in-degree of vertex a is deg™ {a) = 6 since there
are 6 edges with o as their terminal vertex; its out-degree is deg’ (a) = 1. Similarly we have deg™ (b) = 1,
deg™(b) =5. deg (¢) =2, deg(c) = 5, deg ™ (d) = 4, deg ' (d) = 2, deg™ (e) = 0, and deg™ (¢) = 0 (vertex e
is isolated). As a check we see that the sum of the in-degrees and the sum of the out-degrees are both equal
to the number of edges (13).

10. For each of the graphs in Exercises 7-9 determine the
sum of the in-degrees of the vertices and the sum of the
out-degrees of the vertices directly. Show that they are
both equal to the number of edges in the graph.

10. For Exercise 7 the sum of the in-degrees is 3+1+2+1 = 7, and the sum of the out-degrees is 1+2414+3 =7;
there are 7 edges. For Exercise 8 the sum of the in-degrees is 2+3+2+1 = 8, and the sum of the out-degrees
is 24+ 4+ 1+ 1=8; there are 8 edges. For Exercise 9 the sum of the in-degreesis 6 +1+2+44+0 =13,
and the sum of the out-degrees is 1 + 5+ 54 2+ 0 = 13; there are 13 edges.




11. Construct the underlying undirected grap‘il for the graph
with directed edges in Figure 2.

11. To form the underlying undirected graph we simply take all the arrows off the edges. Thus, for example, the
edges from e to d and from d to e become a pair of parallel edges between e and d.

12. What does the degree of a vertex represent in the acquain-
tanceship graph, where vertices represent all the people
in the world? What does the neighborhood a vertex in this
graph represent? What do isolated and pendant vertices
in this graph represent? In one study it was estimated that
the average degree of a vertex in this graph is 1000. What
does this mean in terms of the model?

12. Since there is an edge from a person to each of his or her acquaintances, the degree of v is the number of
people v knows. An isolated vertex would be a person who knows no one, and a pendant vertex would be
a person who knows just one other person (it is doubtful that there are many, if any, isolated or pendant
vertices). If the average degree is 1000, then the average person knows 1000 other people.

13. What does the degree of a vertex represent in an academic
collaboration graph? What does the neighborhood of a
vertex represent? What do isolated and pendant vertices

13. Since a person is joined by an edge to each of his or her collaborators, the degree of v is the number of
collaborators v has. Similarly, the neighborhood of a vertex is the set of coauthors of the person represented
by that vertex. An isolated vertex represents a person who has no coauthors (he or she has published only
single-authored papers), and a pendant vertex represents a person who has published with just one other
PETson,




14. What does the degree of a vertex in the Hollywood graph
represent? What does the neighborhood of a vertex repre-
sent? What do the isolated and pendant vertices represent?

14. Since there is an edge from a person to each of the other actors with whom that person has appeared in a
movie, the degree of v is the number of other actors with whom that person has appeared. The neighborhood
of v is the set of actors with whom v as appeared. An isolated vertex would be a person who has appeared
only in movies in which he or she was the only actor, and a pendant vertex would be a person who has appeared
with only one other actor in any movie (it is doubtful that there are many, if any, isolated or pendant vertices).

15. What do the in-degree and the out-degree of a vertex in:
telephone call graph, as described in Example 4 of Sec
tion 10.1, represent? What does the degree of a vertex it
the undirected version of this graph represent?

15. Since there is a directed edge from u to v for each call made by u to v, the in-degree of v is the number
of calls v received, and the out-degree of u is the number of calls u made. The degree of a vertex in the
undirected version is just the sum of these, which is therefore the number of calls the vertex was involved in.

e L

16. What do the in-degree and the out-degree of a vertex in
the Web graph, as described in Example 5 of Section 10.1,
represent?

16. Since there is an edge from a page to each page that it links to, the outdegree of a vertex is the number of
links on that page, and the in-degree of a vertex is the number of other pages that have a link to it.

17. What do the in-degree and the out-degree of a vertex in :
directed graph modeling a round-robin tournament rep.

resent?

17. Since there is a directed edge from w« to v to represent the event that u beat v when they played, the in-degree
of v must be the number of teams that beat v, and the out-degree of u must be the number of teams that u
beat. In other words, the pair (deg™(v),deg™ (v)) is the win-loss record of v.




18. Show that in a simple graph with at least two vertices
there must be two vertices that have the same degree.

18. This is essentially the same as Exercise 40 in Section 6.2, where the graph models the “know each other”

relation on the people at the party. See the solution given for that exercise. The number of people a person
knows is the degree of the corresponding vertex in the graph.

19. Use Exercise 18 to show that in a group of people, there
must be two people who are friends with the same number
of other people in the group.

19. Model the friendship relation with a simple undirected graph in which the vertices are people in the group,
and two vertices are adjacent if those two people are friends. The degree of a vertex is the number of friends
in the group that person has. By Exercise 18, there are two vertices with the same degree, which means that
there are two people in the group with the same number of friends in the group.




20 Draw these graphs.

a) K7 b) K5 ¢) Kaa
d) 7 e) Wy f) Q4

20. a) This graph has 7 vertices, with an edge joining each pair of distinct vertices.

b) This graph is the complete bipartite graph on parts of size 1 and 8; we have put the part of size 1 in the

middle.

c) This is the complete bipartite graph with 4 vertices in each part.

d) This is the 7-cycle.

-

e) The 7-wheel is the 7-cycle with an extra vertex joined to the other 7 vertices. Warning: Some texts call

this Ws, to have the consistent notation that the subscript in the name of a graph should be the number of

vertices in that graph.

f) We take two copies of )3 and join corresponding vertices.

W




In Exercises 21-25 determine whether the graph is bipartite.
You may find it useful to apply Theorem 4 and answer the
question by determining whether it is possible to assign either
red or blue to each vertex so that no two adjacent vertices are
assigned the same color.

2l. a b 22 b c

f LN

21. To show that this graph is bipartite we can exhibit the parts and note that indeed every edge joins vertices
in different parts. Take {e} to be one part and {a,b,¢,d} to be the other (in fact there is no choice in the
matter). Each edge joins a vertex in one part to a vertex in the other. This graph is the complete bipartite
graph K 1,4-

22. This graph is bipartite, with bipartition {a,c} and {b,d, e}. In fact this is the complete bipartite graph K 5.
If this graph were missing the edge between a and d, then it would still be bipartite on the same sets, but
not a complete bipartite graph.

23. b c
@ =] od
A
1
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23. To show that a graph is not bipartite we must give a proof that there is no possible way to specify the parts.
(There is another good way to characterize nonbipartite graphs, but it takes some notions not introduced until
Section 10.4.) We can show that this graph is not bipartite by the pigeonhole principle. Consider the vertices
b, e, and f. They form a triangle—each is joined by an edge to the other two. By the pigeonhaole principle,
at least two of them must be in the same part of any proposed bipartition. Therefore there would be an edge
joining two vertices in the same part, a contradiction to the definition of a bipartite graph. Thus this graph
is not bipartite.

An alternative way to look at this is given by Theorem 4. Because of the triangle, it is impossible to color
the vertices to satisfy the condition given there.



24. This is the complete bipartite graph K3 4. The vertices in the part of size 2 are ¢ and f, and the vertices in
the part of size 4 are a, b, d, and e.

25. Asin Exercise 23, we can show that this graph is not bipartite by looking at a triangle, in this case the triangle
formed by vertices b, d, and e. Each of these vertices is joined by an edge to the other two. By the pigeonhole
principle, at least two of them must be in the same part of any proposed bipartition. Therefore there would
be an edge joining two vertices in the same part, a contradiction to the definition of a bipartite graph. Thus

this graph is not bipartite.

26. For which values of n are these graphs bipartite?
a) K, b) C, c) W, d) O,

26. a) By the definition given in the text, K| does not have enough vertices to be bipartite (the sets in a partition
have to be nonempty). Clearly K3 is bipartite. There is a triangle in K,, for n > 2, so those complete graphs

are not bipartite. (See Exercise 23.)

b) First we need n > 3 for C,, to be defined. If n is even, then (), is bipartite, since we can take one part
to be every other vertex. If n is odd, then €, is not bipartite.

c) Every wheel contains triangles, so no W,, is bipartite.

d) @, is bipartite for all n > 1, since we can divide the vertices into these two classes: those bit strings with

an odd number of 1’s, and those bit strings with an even number of 1's.




27. Suppose that there are four employees in the computer
support group of the School of Engineering of a large
university. Each employee will be assigned to support
one of four different areas: hardware, software, network-
ing, and wireless. Suppose that Ping is qualified to support
hardware, networking, and wireless; Quiggley is qualified
to support software and networking: Ruiz is qualified to
support networking and wireless, and Sitea is qualified to
support hardware and software.

a) Use abipartite graph to model the four employees and
their qualifications.

b} Use Hall’s theorem to determine whether there is an
assignment of employees to support areas so that each
employee is assigned one area to support.

¢) If an assignment of employees to support areas so that
each employee is assigned to one support area exists,
find one.

27. a) The bipartite graph has vertices h, s, n, and w representing the support areas and P, @, R, and §
representing the employees. The qualifications are modeled by the bipartite graph with edges Ph, Pn, Puw,
Qs, Qn, Rn, Rw, Sh, and Ss.
b) Since every vertex representing an area has degree at least 2, the condition in Hall's theorem is satisfied
for sets of size less than 3. We can easily check that the number of employees qualified for each of the four
subsets of size 3 is at least 3, and clearly the number of employees qualified for each of the subsets of size 4
has size 4.
¢) The answer is not unique; one complete matching is { Pn, Q@s, Rw, Sk}, which is easily found by inspection.




28.

c)

Suppose that a new company has five employees: Zamora,
Agraharam, Smith, Chou, and Macintyre. Each employee
will assume one of six responsiblities: planning, public-
ity, sales, marketing, development, and industry relations.
Each employee is capable of doing one or more of these
jobs: Zamora could do planning, sales, marketing, or in-
dustry relations; Agraharam could do planning or devel-
opment; Smith could do publicity, sales, or industry re-
lations: Chou could do planning, sales, or industry rela-
tions; and Macintyre could do planning, publicity, sales,
or industry relations.
a) Model the capabilities of these employees using a bi-
partite graph.
b) Find an assignment of responsibilites such that each
employee is assigned one responsibility.

Is the matching of responsibilities you found in part
(b) a complete matching? Is it a maximum matching?

28. a) Following the lead in Example 14, we construct a bipartite graph in which the vertex set consists of

two subsets—one for the employees and one for the jobs. Let V; = {Zamora, Agraharam, Smith, Chou,
Macintyre}, and let V, = {planning, publicity, sales, marketing, development, industry relations}. Then the
vertex set for our graph is V' = V; U V5. Given the list of capabilities in the exercise, we must include
precisely the following edges in our graph: {Zamora,planning}, {Zamora,sales}, {Zamora, marketing},
{Zamora, industry relations}, {Agraharam,planning}, {Agraharam,development}, {Smith, publicity},
{Smith,sales}, {Smith,industry relations}, {Chou,planning}, {Chou,sales}, {Chou,industry relations},
{Macintyre, planning}, {Macintyre, publicity}, {Macintyre,sales}, {Macintyre, industry relations}.

b) Many assignments are possible. If we take it as an implicit assumption that there will be no more than
one employee assigned to the same job, then we want a maximum matching for this graph. So we look for five
edges in this graph that share no endpoints. A little trial and error gives us, for example, {Zamora, planning},
{Agraharam, development}, {Smith, publicity}, {Chou,sales}, {Macintyre,industry relations}. We assign
the employees to the jobs given in this matching.

c) This is a complete matching from the set of employees to the set of jobs, but not the other way around.
It is a maximum matching; because there were only five employees, no matching could have more than five
edges.




29,

29.

Suppose that there are five young women and five young
men on an island. Each man is willing to marry some of
the women on the island and each woman is willing to
marry any man who is willing to marry her. Suppose that
Sandeep is willing to marry Tina and Vandana: Barry is
willing to marry Tina, Xia, and Uma; Teja is willing to
marry Tina and Zelda: Anil is willing to marry Vandana
and Zelda; and Emilio is willing to marry Tina and Zelda.
Use Hall’s theorem to show there is no matching of the
young men and young women on the island such that each
young man is matched with a young woman he is willing
to marry.

The partite sets are the set of women ({Tina, Uma, Vandana, Xia, Zelda} ) and the set of men ({Anil, Barry,
Emilio, Sandeep, Teja} ). We will use first letters for convenience (but J for Teja). The given information tells
us that we have edges AV, AZ, BT, BX, BU, ET, EZ, JT, JZ, ST, and SV in our graph. We do not
put an edge between a man and a woman he is not willing to marry. By inspection we find that the condition
in Hall’s theorem is violated by {U/, X}, because these two vertices are adjacent only to B. In other words,

only Barry is willing to marry Uma and Xia, so there can be no matching,

30.

. Suppose that there are five young women and six young

men on an island. Each woman is willing to marry some
of the men on the island and each man is willing to marry
any woman who is willing to marry him. Suppose that
Anna is willing to marry Jason, Larry, and Matt; Barbara
is willing to marry Kevin and Larry; Carol is willing to
marry Jason, Nick, and Oscar; Diane is willing to marry
Jason, Larry, Nick, and Oscar: and Elizabeth is willing to
marry Jason and Matt.

a) Model the possible marriages on the island using a
bipartite graph.

b) Find a matching of the young women and the young
men on the island such that each young woman is
matched with a young man whom she is willing to
marry.

c) Is the matching you found in part (b) a complete
matching? Is it a maximum matching?

a) The partite sets are the set of women ({Anna, Barbara, Carol, Diane, Elizabeth}) and the set of men
({Jason, Kevin, Larry, Matt, Nick, Oscar} ). We will use first letters for convenience. The given information
tells us to have edges AJ, AL, AM, BK, BL, CJ, CN, CO, DJ, DL, DN, DO, EJ, and EM in our
graph. We do not put an edge between a woman and a man she is not willing to marry.

b) By trial and error we easily find a matching (it’s not unique), such as AL, BK, CJ, DN, and EM .

c) This is a complete matching from the women to the men (as well as from the men to the women). A

complete matching is always a maximum matching,



*31.

Suppose there is an integer k such that every man on a
desert island is willing to marry exactly k of the women
on the island and every woman on the island is willing to
marry exactly £ of the men. Also, suppose that a man is
willing to marry a woman if and only if she is willing to
marry him. Show that it is possible to match the men and
women on the island so that everyone is matched with
someone that they are willing to marry.

31. We model this with an undirected bipartite graph, with the men and the women represented by the vertices in

the two parts and an edge between two vertices if they are willing to marry each other. By Hall's theorem, it
is enough to show that for every set S of women, the set N(S) of men willing to marry them has cardinality
at least |S}. A clever way to prove this is by counting edges. Let m be the number of edges between S and
N(S). Since every vertex in S has degree k, it follows that m = k|S|. Because these edges are incident to
N(8), it follows that m < k|N(S)|. Combining these two facts gives k|S} < k|N(S) N(S)| = |S], as
desired.

. B
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32.

In this exercise we prove a theorem of @ystein Ore.
Suppose that G = (V, E) is a bipartite graph with bipar-
tition (¥, V») and that A C V. Show that the maximum
number of vertices of V| that are the endpoints of a
matching of G equals |V|| — max,cy,def(A), where
def(A) = |A| — |N(A)|. (Here, def(A) is called the de-
ficiency of A.) [Hint: Form a larger graph by adding
max 4cy,def(A) new vertices to V5 and connect all of
them to the vertices of V|.]

Let d = max ,cy, def(A), and fix A to be a subset of V; that achieves this maximum. Thus d = |A| -

N(A4)|.
First we show that no matching in G can touch more than |Vi| — d vertices of V1 (or, equivalently, that no
matching in & can have more than |Vi| — d edges). At most |[N(A)| edges of such a matching can have
endpoints in A, and at most |V}| — |4| can have endpoints in V; — A, so the total number of such edges is
N(A)| + |Vi| — |A] = |Vi] — d. It remains to show that we can find a matching in G touching (at
least) |Vi| —d vertices of V) (i.e., a matching in G with |Vi|—d edges). Following the hint, construct a larger
graph ' by adding d new vertices to V5 and joining all of them to all the vertices of V;. Then the condition
in Hall's theorem holds in G’, so G' has a matching that touches all the vertices of V;. At most d of these
edges do not lie in &, and so the edges of this matching that do lie in & form a matching in G with at least
|Vi| — d edges.

at most




33. For the graph G in Exercise 1 find

a) the subgraph induced by the vertices a, b, ¢, and f.
b) the new graph G| obtained from G by contracting the
edge connecting b and f.

33. a) By definition, the vertices are ¢, b, ¢, and f, and the edges are all the edges of the given graph joining
vertices in this list, namely ab, af, bc, and bf.
b) Contracting edge bf merges the vertices & and f into a new vertex; call it z. Edges ab and af are
replaced by edge ax; edges eb and ef are replaced by edge ex; and edge cb is replaced by edge cx. Vertex
d continues to be an isolated vertex in the contracted graph.

34. Let n be a positive integer. Show that a subgraph induced
by a nonempty subset of the vertex set of K, is acomplete

graph.

34. Since all the vertices in the subgraph are adjacent in K, , they are adjacent in the subgraph, i.e., the subgraph

is complete.

35. How many vertices and how many edges do these graphs

have?
a) K, b) Cy c) W,
d) Km,n e) O,

The degree sequence of a graph is the sequence of the de-
grees of the vertices of the graph in nonincreasing order. For
example, the degree sequence of the graph G in Example [ is
4,4,4,3,2,1,0.

35. a) Obviously K,, has n vertices. It has C(n,2) = n(n — 1)/2 edges, since each unordered pair of distinct
vertices is an edge.

b) Obviously C,, has n vertices. Just as obviously it has n edges.

c) The wheel W,, is the same as €, with an extra vertex and n extra edges incident to that vertex. Therefore
it has n + 1 vertices and n + n = 2n edges.

d) By definition K, , has m + n vertices. Since it has one edge for each choice of a vertex in the one part
and a vertex in the other part, it has mn edges.

¢) Since the vertices of ,, are the bit strings of length n, there are 2" vertices. Each vertex has degree n,
since there are n strings that differ from any given string in exactly one bit (any one of the n different bits
can be changed). Thus the sum of the degrees is n2". Since this must equal twice the number of edges (by
the handshaking theorem), we know that there are n2"/2 = n2"~! edges.



36.

36.

Find the degree sequences for each of the graphs in
Exercises 21-25.

We just have to count the number of edges at each vertex, and then arrange these counts in nonincreasing
order. For Exercise 21, we have 4,1,1,1,1. For Exercise 22, we have 3,3,2,2,2. For Exercise 23, we have
4,3,3,2,2,2. For Exercise 24, we have 4,4,2,2,2,2. For Exercise 25, we have 3,3,3,3,2, 2.

37.

Find the degree sequence of each of the following
graphs.

a) Ky b) Cy c) Wy

d) K33 e) QO3

37. In each case we just record the degrees of the vertices in a list, from largest to smallest.

a) Each of the four vertices is adjacent to each of the other three vertices, so the degree sequence is 3,3,3,3.

b) Each of the four vertices is adjacent to its two neighbors in the cycle, so the degree sequence is 2,2,2,2.

c) Each of the four vertices on the rim of the wheel is adjacent to each of its two neighbors on the rim, as well

as to the middle vertex. The middle vertex is adjacent to the four rim vertices. Therefore the degree sequence
is 4,3,3,3,3.

d) Each of the vertices in the part of size two is adjacent to each of the three vertices in the part of size three,
and vice versa, so the degree sequence is 3,3, 2,2, 2.

e) Each of the eight vertices in the cube is adjacent to three others (for example, 000 is adjacent to 001, 010,
and 100. Therefore the degree sequence is 3,3,3.3,3,3,3,3.

38.

38.

What is the degree sequence of the bipartite graph Ky, »
where m and n are positive integers? Explain your answer.

Assume that m > n. Then each of the n vertices in one part has degree m, and each of the m vertices in
other part has degree n. Thus the degree sequence is m, m,...,m,n,n,...,n, where the sequence contains
n copies of m and m copies of n. We put the m's first because we assumed that m > n. If n > m, then of
course we would put the m copies of n first. If m = n, this would mean a total of 2n copies of n.




39. What is the degree sequence of K, where n is a positive
integer? Explain your answer.

39. Each of the n vertices is adjacent to each of the other n — 1 vertices, so the degree sequence is simply
n—1n—1...,n—1, with n terms in the sequence.

40. How many edges does a graph have if its degree sequence
is 4. 3, 3. 2, 2?7 Draw such a graph.

40, The 4-wheel (see Figure 5) with one edge along the rim deleted is such a graph. It has (44+3+3+2+2)/2=7
edges.

41. How many edges does a graph have if its degree sequence
is 5, 2,2, 2,2, 17 Draw such a graph.

A sequence dy, da, ..., d, is called graphic if it is the degree
sequence of a simple graph.

41. The number of edges is half the sum of the degrees (Theorem 1). Therefore this graph has (5 +2+2+2+
2+1)/2 =17 edges. A picture of this graph is shown here (it is essentially unique).




42. Determine whether each of these sequences is graphic.
For those that are, draw a graph having the given degree

sequence.

a) 5.4.3.2.1.0 b) 6.5.4,3.2.1 ¢) 2.2,2,2,2.2
d) 3.3,3,2.2,2 e) 3.3,2,2,2.2 ) I.1.1.1. 1. 1
g) 5.3,3.3.3.3 h) 5,5.4,3.2.1

42. a) Since the number of odd-degree vertices has to be even, no graph exists with these degrees. Another reason
no such graph exists is that the vertex of degree 0 would have to be isolated but the vertex of degree 5 would
have to be adjacent to every other vertex, and these two statements are contradictory.

b) Since the number of odd-degree vertices has to be even, no graph exists with these degrees. Another reason
no such graph exists is that the degree of a vertex in a simple graph is at most 1 less than the number of
vertices,

c) A 6-cycle is such a graph. (See picture below.)

d) Since the number of odd-degree vertices has to be even, no graph exists with these degrees.

e) A 6-cycle with one of its diagonals added is such a graph. (See picture below.)

f) A graph consisting of three edges with no common vertices is such a graph. (See picture below.)

g) The 5-wheel is such a graph. (See picture below.)

h) Each of the vertices of degree 5 is adjacent to all the other vertices. Thus there can be no vertex of
degree 1. So no such graph exists.
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43. Determine whether each of these sequences is graphic.
For those that are, draw a graph having the given degree

sequence.
a) 3,3,3,3,2 b) 5.4.3.2.1 c) 4.4.3.2.1
d) 4.4,3,3.3 e) 3.2.2, 1,0 f) 1.1.1. 1.1

43. There is no such graph in part (b), since the sum of the degrees is odd (and also because a simple graph with
5 vertices cannot have any degrees greater than 4). Similarly, the odd degree sum prohibits the existence of
graphs with the degree sequences given in part (d) and part (f). There is no such graph in part (c), since
the existence of two vertices of degree 4 implies that there are two vertices each joined by an edge to every
other vertex. This means that the degree of each vertex has to be at least 2, and there can be no vertex of

degree 1. The graphs for part (a) and part (e) are shown below; one can draw them after just a little trial
and error.

(a) (e)



*44. Suppose thatdy, d3, ..., d, is a graphic sequence. Show
that there is a simple graph with vertices vy, va, ..., v,
such that deg(v;) =d; fori = 1,2, ..., n and vy is adja-
cent to vo, ..., Vg +1-

44. Since isolated vertices play no essential role, we can assume that d, > 0. The sequence is graphic, so there is
some simple graph G such that the degrees of the vertices are dy, ds, ..., d,. Without loss of generality, we
can label the vertices of our graph so that d(v;) = d;. Among all such graphs, choose GG to be one in which v
is adjacent to as many of va, vs, ..., v4,4+1 as possible. (The worst case might be that v; is not adjacent to
any of these vertices.) If v; is adjacent to all of them, then we are done. We will show that if there is a vertex
among ve, Ui, ..., Ug,4+1 that vy is not adjacent to, then we can find another graph with d(v;) = d; and
having v; adjacent to one more of the vertices vy, v3, ..., U4, +1 than is true for . This is a contradiction
to the choice of ¢, and hence we will have shown that G satisfies the desired condition.

Under this assumption, then, let u be a vertex among v, vs, ..., 4,4+ that vy is not adjacent to, and
let w be a vertex not among v2, va, ..., Ud,+1 that v; is adjacent to; such a vertex w has to exist because
d(vy) = d;. Because the degree sequence is listed in nonincreasing order, we have d(u) > d(w). Consider all
the vertices that are adjacent to w. It cannot be the case that w is adjacent to each of them, because then
w would have a higher degree than u (because w is adjacent to vy as well, but u is not). Therefore there is
some vertex x such that edge ux is present but edge xw is not present. Note also that edge vyw is present
but edge v,u is not present. Now construct the graph G’ to be the same as G except that edges ux and vyw
are removed and edges rw and vyu are added. The degrees of all vertices are unchanged, but this graph has
vy adjacent to more of the vertices among v, , v3, ..., U4, +1 than is the case in . That gives the desired

contradiction, and our proof is complete.

48. How many subgraphs with at least one vertex does K>
have?

48. We list the subgraphs: the subgraph consisting of Ky itself, the subgraph consisting of two vertices and no
edges, and two subgraphs with 1 vertex each. Therefore the answer is 4.

49. How many subgraphs with at least one vertex does K3
have?

49. We will count the subgraphs in terms of the number of vertices they contain. There are clearly just 3 subgraphs
consisting of just one vertex. If a subgraph is to have two vertices, then there are C(3,2) = 3 ways to choose
the vertices, and then 2 ways in each case to decide whether or not to include the edge joining them. This
gives us 3-2 = 6 subgraphs with two vertices. If a subgraph is to have all three vertices, then there are 2% = 8
ways to decide whether or not to include each of the edges. Thus our answer is 3+ 6+ 8 = 17.



50. How many subgraphs with at least one vertex does W;
have?

50. We need to count this in an organized manner. First note that W3 is the same as K4, and it will be easier
if we think of it as K. We will count the subgraphs in terms of the number of vertices they contain. There
are clearly just 4 subgraphs consisting of just one vertex. If a subgraph is to have two vertices, then there
are ('(4,2) = 6 ways to choose the vertices, and then 2 ways in each case to decide whether or not to include
the edge joining them. This gives us 6 -2 = 12 subgraphs with two vertices. If a subgraph is to have three
vertices, then there are C'(4,3) = 4 ways to choose the vertices, and then 2% = 8 ways in each case to decide
whether or not to include each of the edges joining pairs of them. This gives us 4 - 8 = 32 subgraphs with
three vertices. Finally, there are the subgraphs containing all four vertices. Here there are 2° = 64 ways to
decide which edges to include. Thus our answer is 4 + 12 + 32 4 64 = 112,

n
3

Let G be a graph with v vertices and ¢ edges. Let M be
the maximum degree of the vertices of G, and let m be
the minimum degree of the vertices of G. Show that

a) 2e/v=m. b) 2e/v < M.

52. a) We want to show that 2e > vm. We know from Theorem 1 that 2e is the sum of the degrees of the
vertices. This certainly cannot be less than the sum of m for each vertex, since each degree is no less than m.
b) We want to show that 2e < vM. We know from Theorem 1 that 2e is the sum of the degrees of the
vertices. This certainly cannot exceed the sum of M for each vertex, since each degree is no greater than M .

A simple graph is called regular if every vertex of this graph
has the same degree. A regular graph is called n-regular if
every vertex in this graph has degree n.

53. For which values of n are these graphs regular?
a) K, b) C, c) W, d) O,

53. a) The complete graph K, is regular for all values of n > 1, since the degree of each vertex is n = 1.
b) The degree of each vertex of C,, is 2 for all n for which C, is defined, namely n > 3, so C,, is regular for
all these values of n.
¢) The degree of the middle vertex of the wheel W, is n, and the degree of the vertices on the “rim” is 3.
Therefore W), is regular if and only if n = 3. Of course W3 is the same as K.
d) The cube @, is regular for all values of n = 0, since the degree of each vertex in @, is n. (Note that Qg
is the graph with 1 vertex.)




51. Draw all subgraphs of this graph.

a b

51. This graph has a lot of subgraphs. First of all, any nonempty subset of the vertex set can be the vertex
set for a subgraph, and there are 15 such subsets. If the set of vertices of the subgraph does not contain
vertex a, then the subgraph can of course have no edges. If it does contain vertex a, then it can contain or
fail to contain each edge from a to whichever other vertices are included. A careful enumeration of all the

possibilities gives the 34 graphs shown below.
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54. For which values of m and n is Ky , regular?

54. Since the vertices in one part have degree m, and vertices in the other part have degree n, we conelude that
Ky n is regular if and only if m = n.

55. How many vertices does a regular graph of degree four
with 10 edges have?

55. If a graph is regular of degree 4 and has n vertices, then by the handshaking theorem it has 4n/2 = 2n edges.
Since we are told that there are 10 edges, we just need to solve 2n = 10. Thus the graph has 5 vertices. The
complete graph K35 is one such graph (and the only simple one).
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In Exercises 56358 find the union of the given pair of simple
graphs. (Assume edges with the same endpoints are the same.)

6. a
f: :b I b
d d

56. We draw the answer by superimposing the graphs (keeping the positions of the vertices the same).

n

n

a
7. a b a I b
c d c g d

57. We draw the answer by superimposing the graphs (keeping the positions of the vertices the same).

n
=]
2

>
=
2y

58. The union is shown here. The only common vertex is a, so we have reoriented the drawing so that the pieces

b
Igh

3 b
B
Cg d

will not overlap.




59. The complementary graph G of a simple graph G has
the same vertices as G. Two vertices are adjacent in G if
and only if they are not adjacent in G. Describe each of
these graphs.

a) K, b) K.-u,u c) Cy d) Ou

59. a) The complement of a complete graph is a graph with no edges.

b) Since all the edges between the parts are present in Ko, ,,, but none of the edges between vertices in the
same part are, the complement must consist precisely of the disjoint union of a K, and a K,,, i.e., the graph
containing all the edges joining two vertices in the same part and no edges joining vertices in different parts.
¢) There is really no better way to describe this graph than simply by saying it is the complement of C,,.
One representation would be to take as vertex set the integers from 1 to n, inclusive, with an edge between
distinct vertices ¢ and j as long as i and j do not differ by +1, modulo n.

d) Again, there is really no better way to describe this graph than simply by saying it is the complement of
(). One representation would be to take as vertex set the bit strings of length n, with two vertices joined by
an edge if the bit strings differ in more than one bit.

60. If G is a simple graph with 15 edges and G has 13 edges,
how many vertices does G have?

60. The given information tells us that GUG has 28 edges. However, GUG is the complete graph on the number
of vertices n that G has. Since this graph has n(n — 1)/2 edges, we want to solve n(n — 1)/2 = 28. Thus
n=_8§.

61. If the simple graph G has v vertices and e edges, how
many edges does G have?

61. Since K, has C(v,2) = v(v — 1)/2 edges, and since G has all the edges of K, that G is missing, it is clear
that G has [v(v — 1)/2] — e edges.
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62. It the degree sequence of the simple graph G is
4, 3,3, 2, 2, what is the degree sequence of G?

62. Following the ideas given in the solution to Exercise 63, we see that the degree sequence is obtained by
subtracting each of these numbers from 4 (the number of vertices) and reversing the order. We obtain
2,2.1,1,0.

63. If the degree sequence of the simple graph G is
dy,da, ..., dy, whatis the degree sequence of G?

63. If G has m vertices, then the degree of vertex v in G is n — 1 minus the degree of v in G (there will be
an edge in G from v to each of the n — 1 other vertices that v is not adjacent to in G). The order of the
sequence will reverse, of course, because if d, > d,, then n—1—d, <n—1-d,. Therefore the degree sequence
of Gwilben—1—-d,. n—1—d,_y,...., n—1—dy, n—1—d.

*64. Show that if G is a bipartite simple graph with v vertices
and e edges, then e < v2/4.

64. Suppose the parts are of sizes k and v — k. Then the maximum number of edges the graph may have is
E(v — k) (an edge between each pair of vertices in different parts). By algebra or calculus, we know that the
function f(k) = k(v — k) achieves its maximum when k = v/2, giving f(k) = v?/4. Thus there are at most

v?/4 edges.

The converse of a directed graph G = (V, E), denoted

by G, is the directed graph (V, F), where the set F

of edges of G is obtained by reversing the direction of

each edge in E.

67. Draw the converse of each of the graphs in Exercises 7-9
in Section 10.1.

67. These pictures are identical to the figures in those exercises, with one change, namely that all the arrowheads
are turned around. For example, rather than there being a directed edge from a to b in #7, there is an edge
from b to a@. Note that the loops are unaffected by changing the direction of the arrowhead—a loop from a
vertex to itself is the same, whether the drawing of it shows the direction to be clockwise or counterclockwise.




SECTION 10.3 Representing Graphs and Graph Isomorphism

Human beings can get a good feeling for a small graph by looking at a picture of it drawn with points in
the plane and lines or curves joining pairs of these points. If a graph is at all large (say with more than a
dozen vertices or so), then the picture soon becomes too crowded to be useful. A computer has little use
for nice pictures, no matter how small the vertex set. Thus people and machines need more precise—more
discrete—representations of graphs. In this section we learned about some useful representations. They are
for the most part exactly what any intelligent person would come up with, given the assignment to do so.

The only tricky idea in this section is the concept of graph isomorphism. It is a special case of a more
general notion of isomorphism, or sameness, of mathematical objects in various settings. Isomorphism tries
to capture the idea that all that really matters in a graph is the adjacency structure. If we can find a way
to superimpose the graphs so that the adjacency structures match, then the graphs are, for all purposes that
matter, the same. In irying to show that two graphs are isomorphic, try moving the vertices around in your
mind to see whether you can make the graphs look the same. Of course there are often lots of things to help.
For example, in every isomorphism, vertices that correspond must have the same degree.

A good general strategy for determining whether two graphs are isomorphic might go something like this.
First check the degrees of the vertices to make sure there are the same number of each degree. See whether
vertices of corresponding degrees follow the same adjacency pattern (e.g., if there is a vertex of degree 1
adjacent to a vertex of degree 4 in one of the graphs, then there must be the same pattern in the other, if the

graphs are isomorphic). Then look for triangles in the graphs, and see whether they correspond. Sometimes,
if the graphs have lots of edges, it is easier to see whether the complements are isomorphic (see Exercise 46).
If you cannot find a good reason for the graphs not to be isomorphic (an invariant on which they differ),
then try to write down a one-to-one and onto function that shows them to be isomorphic (there may be more
than one such function); such a function has to have vertices of like degrees correspond, so often the function
practically writes itself. Then check each edge of the first graph to make sure that it corresponds to an edge
of the second graph under this correspondence.

Unfortunately, no one has yet discovered a really good algorithm for determining graph isomorphism that
works on all pairs of graphs. Research in this subject has been quite active in recent years. See Writing
Project 10.




In Exercises 1—4 use an adjacency list to represent the given

graph.

1. a b 2. a b c
C d d e

3. 4.

1. Adjacency lists are lists of lists. The adjaceney list of an undirected graph is simply a list of the vertices of the
given graph, together with a list of the vertices adjacent to each. The list for this graph is as follows. Since,
for instance, b is adjacent to a and d, we list a and d in the row for &.

Vertex Adjacent vertices
a b,c,d

b a,d

c a,d

d a, b, ¢

2. This 1s similar to Exercise 1. The list is as follows.

Vertex Adjacent vertices
a b.d

b a,d, e

c d, e

d a, b, e

3. To form the adjacency list of a directed graph, we list, for each vertex in the graph, the terminal vertex of
each edge that has the given vertex as its initial vertex. The list for this directed graph is as follows. For
example, since there are edges from d to each of b, ¢, and d, we put those vertices in the row for d.

Initial vertex Terminal vertices
a a,b,e,d

b d

c a,b

d b, c,d

4, This 1s similar to Exercise 3. The list 1s as follows.

Initial vertex Terminal vertices
a b,d

b a, e d, e

& b,e

d . €

C, e



5. Represent the graph in Exercise 1 with an adjacency ma-
trix.

5. For Exercises 5-8 we assume that the vertices are listed in alphabetical order. The matrix contains a 1 as
entry (7,7) if there is an edge from vertex i to vertex j; otherwise that entry is 0.

01

1
1
1
0

—= D D =

10
1 0
11

6. Represent the graph in Exercise 2 with an adjacency ma-
trix.

6. This is similar to Exercise 5. The vertices are assumed to be listed in alphabetical order.

01 0 1 0
1 00 11
000 11
1 11 00
01 1 00

7. Represent the graph in Exercise 3 with an adjacency ma-
trix.

7. This is similar to Exercise 5. Note that edges have direction here, so that, for example, the (1,2) entry isa 1
since there is an edge from a to b, but the (2,1) entry is a 0 since there is no edge from b to a. Also, the
(1,1) entry is a 1 since there is a loop at a, but the (2,2) entry is a 0 since there is no loop at b.

11 11
0001
1 1.0 0
01 11

8. Represent the graph in Exercise 4 with an adjacency ma-
trix.

8. This 1s similar to Exercise 7.

01 0 1 0
1 01 11
01 1 00
1 00 01
001 01




9. Represent each of these graphs with an adjacency matrix.
a) Ky b) K14 c) K23
d) Cy e) Wy f) Qs

9. We can solve these problems by first drawing the graph, then labeling the vertices, and finally constructing
the matrix by putting a 1 in position (7,7) whenever vertices i and j are joined by an edge. It helps to
choose a nice order, since then the matrix will have nice patterns in it.

a) The order of the vertices does not matter, since they all play the same role. The matrix has 0’s on the
diagonal, since there are no loops in the complete graph.

01 1 1
1 0 1 1
1 1 0 1
1 1 1 0
b) We put the vertex in the part by itself first.
01 1 1 1 ]
100 00
100 00
1 0 0 0 0
1 0 0 0 0l
¢) We put the vertices in the part of size 2 first. Notice the block structure.
0 0 1 1 17
001 11
11 0 0 0
1 1 0 0 0
L1 1 0 0 0l
d) We put the vertices in the same order in the matrix as they are around the cycle.
01 0 1

1 010
D101
10140

e} We put the center vertex first. Note that the last four columns of the last four rows represent a Cy.

01 1 11
1 0101
110 10
1 01 01
1 10 10

f) We can label the vertices by the binary numbers from 0 to 7. Thus the first row (also the first column) of
this matrix corresponds to the string 000, the second to the string 001, and so on. Since @3 has 8 vertices,
this is an 8 x 8 matrix.

ro11 01 0 0 07
10010100
10010010
01 100O0OD1
10000110
01 00100D0I1
00101001

|.0 001 01 1 0l




In Exercises 10—-12 draw a graph with the given adjacency

matrix.
10. fo 1 o Lo 0o 1 1
1 0 1 0 0 1 0
0 1 0 I 1 0 1
|_1 11 OJ

10. This graph has three vertices and is undirected, since the matrix is symmetric.

— @
a ] C

11. This graph has four vertices and is directed, since the matrix is not symmetric. We draw the four vertices as
points in the plane, then draw a directed edge from vertex i to vertex j whenever there is a 1 in position

(i,4) in the given matrix.

2.7 1 1 0
0 0 1 0
I 0 1 0

|_1 [ OJ

12. This graph is directed, since the matrix is not symmetric.

a b




In Exercises 13-15 represent the given graph using an adja-
cency matrix.

13. a b 14 a ——_ b

\_/ \_/

13. We use alphabetical order of the vertices for Exercises 13-15. If there are &k parallel edges between vertices i
and j, then we put the number k into the (i, j)*® entry of the matrix. In this exercise, there is only one pair
of parallel edges.

0 61 0
001 2
1 1 01
0210
14. This 1s similar to Exercise 13.
0 3 0 1
3 0 1 0
01 0 3
1 0 3 0

15. This is similar to Exercise 13. In this graph there are loops, which are represented by entries on the diagonal.
For example, the loop at ¢ is shown by the 1 as the (3,3)*" entry.

1 0 2 1
011 2
2110
1 2 01




In Exercises 16—18 draw an undirected graph represented by
the given adjacency matrix.

16. 17.

b ) =
o w
= = b2

N = N .

S WO

—_— L O

=T =

16. Because of the munbers larger than 1, we need multiple edges in this graph.

a

8. 10 1 3 0 4
1 2 1 3 0
31 1 0 1
0 3 0 0 2
4 0 1 2 3

18. This is similar to Exercise 16.




In Exercises 19-21 find the adjacency matrix of the given
directed multigraph with respect to the vertices listed in al-
phabetic order.

19. b j

19. We use alphabetical order of the vertices. We put a 1 in position (i, j) if there is a directed edge from vertex
1 to vertex j; otherwise we make that entry a 0. Note that loops are represented by 1's on the diagonal.

01 0 0

01 10

0 1 1 1

1 0 0 0

20. This i1s similar to Exercise 19.

1 1 1 1
01 0 1
1 01 0
1 1 1 1

21. This is similar to Exercise 19, except that there are parallel directed edges. If there are k parallel edges from
vertex i to vertex j, then we put the number k into the (i, )™ entry of the matrix. For example, since there
are 2 edges from a to c, the (1,3)*" entry of the adjacency matrix is 2; the loop at ¢ is shown by the 1 as
the (3,3)'" entry.

1
1
1

5~ R
i == &
== B

)




In Exercises 22-24 draw the graph represented by the given
adjacency matrix.

22, 24,

1 0 1 2311 2 1 0 2 3 0
0 0 1 2 0 0 12 2 1
1 1 1 0 2 2 21 1 0

1 0 0 2

22, a) This matrix 18 symmetric, so we can take the graph to be undirected. No parallel edges are present, since

no entries exceed 1.

23. Since the matrix is not symmetric, we need directed edges; furthermore, it must be a directed multigraph
because of the entries larger than 1. For example, the 2 in position (3,2) means that there are two parallel
edges from vertex ¢ to vertex b.

24, This is the adjacency matrix of a directed multigraph, becanse the matrix is not symmetric and it contains
entries greater than 1.

25, Is every zero—one square matrix that is symmetric and
has zeros on the diagonal the adjacency matrix of a sim-
ple graph?

25, Sinece the matrix is symmetric, it has to be square, so it represents a graph of some sort. In fact, such a
matrix does represent a simple graph. The fact that it is a zero-one matrix means that there are no parallel
edges. The fact that there are ('s on the diagonal means that there are no loops. The fact that the matrix is
symmetric means that the edges can be assumed to be undirected. Note that such a matrix also represents a
directed graph in which all the edges happen to appear in antiparallel pairs (see the solution to Exercise 1d
in Section 10.1 for a definition), but that is irrelevant to this question; the answer to the question asked is

[ n

yes.




26. Use an incidence matrix to represent the graphs in Exer-
cises 1 and 2.

26. Each column represents an edge; the two 1's in the column are in the rows for the endpoints of the edge.

Exercise 1 Exercise 2 71 1 0 0 0 0
1 1 1 0 0
1 01 1 00
1 0 0 1 0 )
0000 11
01 0 0 1 ]
00111 01 1 0 10
000101

27. Use an incidence matrix to represent the graphs in Exer-
cises 13-15.

27. In an incidence matrix we have one column for each edge. We use alphabetical order of the vertices. Loops

are represented by columns with one 1; other edges are represented by columns with two 1's. The order in
which the columns are listed is immaterial.

Exercise 13 1 0 0 0 0 Exercise14 1 1 1 1 0 0 0 0
01110 11101000
11 0 0 1 0 00 1 1 1 1
[0 0 1 1 1 00 01 0111
Exercise 15 1 1 1 1 0 0 0 0 0 0
o 00O0CG1 11100
01 1 0 01 0010
0 001 001101

*28. What is the sum of the entries in a row of the adjacency
matrix for an undirected graph? For a directed graph?

28. For an undirected graph, the sum of the entries in the i"" row is the same as the corresponding column sum,
namely the number of edges incident to the vertex i, which is the same as the degree of ¢ minus the number

of loops at i (since each loop contributes 2 toward the degree count).

For a directed graph, the answer is dual to the answer for Exercise 29. The sum of the entries in the "

row is the number of edges that have ¢ as their initial vertex, i.e., the out-degree of :.




*29, What is the sum of the entries in a column of the adjacency
matrix for an undirected graph? For a directed graph?

29. In an undirected graph, each edge incident to a vertex j contributes 1 in the j*" column; thus the sum of
the entries in that column is just the number of edges incident to j. Another way to state the answer is that
the sum of the entries is the degree of j minus the number of loops at j, since each loop contributes 2 to the
degree count.

In a directed graph, each edge whose terminal vertex is j contributes 1 in the j*" column; thus the sum
of the entries in that column is just the number of edges that have j as their terminal vertex. Another way
to state the answer is that the sum of the entries is the in-degree of 7.

30. What is the sum of the entries in a row of the incidence
matrix for an undirected graph?

rth

30. The sum of the entries in the i*" row of the incidence matrix is the number of edges incident to vertex i, since

there 1s one column with a 1 m row ¢ for each such edge.

31. What is the sum of the entries in a column of the incidence
matrix for an undirected graph?

31. Since each column represents an edge, the sum of the entries in the column is either 2, if the edge has 2
incident vertices (i.e., is not a loop), or 1 if it has only 1 incident vertex (i.e., is a loop).




*32. Find an adjacency matrix for each of these graphs.
a) K, b) C, c) W, d) Kun.n e) Op

32. a) This is just the matrix that has 0’s on the main diagonal and 1's elsewhere, namely

o1 1 ... 1
1 01 ... 1
11 0 ... 1
11 1 ... 0
b) We label the vertices so that the cycle goes vy, vg.....v,,v1. Then the matrix has 1’s on the diagonals

just above and below the main diagonal and in positions (1,n) and (n.1). and 0's elsewhere:

(0 1 0 ... 0 17
101 ... 00
01 0 ... 00
0o o0 ... 01
L1 0 0 ... 1 0]

¢) This matrix is the same as the answer in part (b), except that we add one row and column for the vertex




*33. Find incidence matrices for the graphs in parts (a)—(d) of
Exercise 32.

33. a) The incidence matrix for K, has n rows and C(n,2) columns. For each ¢ and j with 1 <1 < j < n,
there is a column with 1's in rows ¢ and j and (s elsewhere.

b) The matrix looks like this, with n rows and n columns.

10 0 0 17
110 0 0
01 1 0 0
00 1 00
000 -+ 10
0 0 0 - 1 1]

c¢) The matrix looks like the matrix for C,,, except with an extra row of 0’s (which we have put at the end),
since the vertex “in the middle” is not involved in the edges “around the outside,” and n more columns for
the “spokes.” We show some extra space between the rim edge columns and the spoke columns; this is for

human convenience only and does not have any bearing on the matrix itself.

1 0 0 01 100 --- 07
1 10 0 0 010 --- 0
011 0 0 c 01 --- 0
001 0 0 000 0
000 - 10 000 0
oo o0 - 11 00 1
Lo 0 0 --- 0D 0O 1 11 1]

d) This matrix has m + n rows and mn columns, one column for each pair (2, j) with 1 <4 < m and
1 < j < n. We have put in some extra spacing for readability of the pattern.

11 -1 00 -0 -+ 00 -0
00 -+ 0 11 1 =« 00 - 0
00 0 00 0 11 1
1 0 10 0 10 0
01 0 0 1 0 01 0
00 .- 1 00 .. 1 00 - 1 |




In Exercises 3444 determine whether the given pair of graphs
is isomorphic. Exhibit an isomorphism or provide a rigorous
argument that none exists.

34,
iy Uy iy Uy s
S
34. These graphs are 1somorphic, since each is a path with five vertices. One isomorphism is f(u1) = v1, f(u2) =
va, flus) =va. flug) = vs, and flus) = vs.
35.
I3
U i3

lis5 My

35. These graphs are isomorphic, since each is the 5-cycle. One isomorphism is f(uy) = vy, flug) = vs, flug) =
v, flug) =wvg, and f(usz) = va.

36. w iy V|
Vs Va
H4 q vy Vg

36. These praphs are not isomorphic. The second has a vertex of degree 4, whereas the first does not.




1131 [15]

37. These graphs are isomorphic, since each is the T-cycle (this is just like Exercise 35).

38, These two graphs are isomorphic. Each consists of a K4 with a fifth vertex adjacent to two of the vertices

in the Ky. Many isomorphisms are possible. One is f(u1) = v1. f(u2) = vs, flus) = va, f(ua) = vs. and

flus) = v4.

g I3

5 I

iy
39. These two graphs are isomorphic. One can see this visually—just imagine “moving” vertices u; and 1y
into the inside of the rectangle, thereby obtaining the picture on the right. Formally, one isomorphism is

fluy)=vs, flug) =we, flug) =vs, flus) =ve, flus) = v, and flug) = v;.




la Ve V3

s iy Vs Vy

40. These graphs are not isomorphic—the degrees of the vertices are not the same (the graph on the right has a

vertex of degree 4, which the graph on the left lacks).

41. u Hy  H3 us g lg
Iy g

V] Va Vi Vs Vg Vg
V3 Vy

41. These graphs are not isomorphic. In the first graph the vertices of degree 3 are adjacent to a common vertex.

This is not true of the second graph.

42. Ug g
i 4 g ity Mg
g g g
Ve V7

Vg Vg Vio

42, These graphs are not 1somorphic. In the first graph the vertices of degree 4 are adjacent. This is not true of

the second graph.



43. These are isomorphic. One isomorphism is f(u1) = v, fluz) = ve, flus) = va, flug) = vs, flus) = vg,
flug) = vs, f(uz) =wr, flus) = vs, f(ug) = v10, and f(u10) = vs.

44. iy vy

g iy Vg Va

g (L] Vg Vy

'5

44, The easiest way to show that these graphs are not isomorphic is to look at their complements. The complement
of the graph on the left consists of two 4-cycles. The complement of the graph on the right is an 8-cycle.

Since the complements are not isomorphic, the graphs are also not isomorphic.

45, Show that isomorphism of simple graphs is an equiva-
lence relation.

45. We must show that being isomorphic is reflexive, symmetric, and transitive. It is reflexive since the identity
function from a graph to itself provides the isomorphism (the one-to-one correspondence}—certainly the iden-
tity function preserves adjacency and nonadjacency. It is symmetric, since if f is a one-to-one correspondence
that makes (7 isomorphic to G2, then f~! is a one-to-one correspondence that makes G, isomorphic to Gi;
that is, f~! is a one-to-one and onto function from V, to Vi such that ¢ and d are adjacent in Gy if and
only if f=%(c) and f~!(d) are adjacent in ;. It is transitive, since if f is a one-to-one correspondence that
makes (7; isomorphic to Gs, and ¢ is a one-to-one correspondence that makes G2 isomorphic to G5, then
go f is a one-to-one correspondence that makes G isomorphic to Gs.



46. Suppose that & and H are isomorphic simple graphs.
Show that their complementary graphs G and H are also
isomorphic.

46. This is immediate from the definition, since an edge is in G if and only if it is not in &, if and only if the

corresponding edge is not in H . if and only if the corresponding edge is in H .

47. Describe the row and column of an adjacency matrix of
a graph corresponding to an isolated vertex.

47. If a vertex is isolated, then it has no adjacent vertices. Therefore in the adjacency matrix the row and column
for that vertex must contain all 0’s.

48. Describe the row of an incidence matrix of a graph cor-
responding to an isolated vertex.

48, An isolated vertex has no incident edges, so the row consists of all 0’s.

49. Show that the vertices of a bipartite graph with two or
more vertices can be ordered so that its adjacency matrix

has the form

0 A
B of
where the four entries shown are rectangular blocks.

49. Let V; and V45 be the two parts, say of sizes m and n, respectively. We can number the vertices so that
all the vertices in V; come before all the vertices in V3. The adjacency matrix has m +n rows and m +n
columns. Since there are no edges between two vertices in V), the first m columns of the first m rows must
all be ’s. Similarly, since there are no edges between two vertices in V5, the last n columns of the last n
rows must all be 0's. This is what we were asked to prove.




50.

Show that this graph is self-complementary.
a b
d c

50. The complementary graph consists of edges {a,c}, {c.d}, and {d.b}; it is clearly isomorphic to the original

graph (send d to a, a to ¢, b to d, and ¢ to b).

51.

51.

Find a self-complementary simple graph with five ver-
tices.

There are two such graphs, which can be found by trial and error. (We need only look for graphs with 5
vertices and 5 edges, since a self-complementary graph with 5 vertices must have C(5,2)/2 = § edges. If
nothing else, we can draw them all and find the complement of each. See the pictures for the solution of
Exercise 47d in Section 10.4.) One such graph is C5. The other consists of a triangle, together with an edge
from one vertex of the triangle to the fourth vertex, and an edge from another vertex of the triangle to the
fifth vertex.

[T

#52, Show that if G is a self-complementary simple graph

with v vertices, then v=0or 1 (mod 4).

. If G is self-complementary, then the number of edges of G must equal the number of edges of G. But the

sum of these two numbers is n(n — 1)/2, where n is the number of vertices of &, since the union of the two
graphs is K,,. Therefore the number of edges of G must be n(n—1)/4. Since this number must be an integer,
a look at the four cases shows that n may be congruent to either 0 or 1, but not congruent to either 2 or 3,

modulo 4.

53.

53.

For which integers n is C,, self-complementary?

If €y, is to be self-complementary, then C,, must have the same number of edges as its complement. We know
that €, has n edges. Its complement has the number of edges in K,, minus the number of edges in C,,,
namely C(n,2)-n = [n{n-1)/2]—n. If we set these two quantities equal we obtain [n(n—1)/2]—n = n, which
has n = 5 as its only solution. Thus Cs is the only C, that might be self-complementary—our argument
just shows that it has the same number of edges as its complement, not that it is indeed isomorphic to its
complement. However, it we draw 5 and then draw its complement, then we see that the complement is
again a copy of C5. Thus n = 5 is the answer to the problem.



54. How many nonisomorphic simple graphs are there with n

54. An excellent resource for questions of the form “how many nonisomorphic graphs are there with ...

vertices, when n is
a) 27 b) 37 c) 47

7" s
Ronald C. Read and Robin J. Wilson, An Atlas of Graphs (Clarendon Press, 1998).

a) There are just two graphs with 2 vertices—the one with no edges, and the one with one edge.

b) A graph with three vertices can contain 0, 1. 2, or 3 edges. There is only one graph for each number of
edges, up to isomorphism. Therefore the answer 1s 4.

¢) Here we look at graphs with 4 vertices. There is 1 graph with no edges, and 1 (up to isomorphism)
with a single edge. If there are two edges, then these edges may or may not be adjacent, giving us 2
possibilities. If there are three edges, then the edges may form a triangle, a star, or a path, giving us 3
possibilities. Since graphs with four, five, or six edges are just complements of graphs with two, one, or no
edges (respectively), the number of isomorphism classes must be the same as for these earlier cases. Thus our

answer 1s 1 +14+2+34+24+1+1=11.

55.

55.

How many nonisomorphic simple graphs are there with
five vertices and three edges?

We need to enumerate these graphs carefully to make sure of getting them all-—leaving none out and not
duplicating any. Let us organize our catalog by the degrees of the vertices. Since there are only 3 edges, the
largest the degree could be is 3, and the only graph with 5 vertices, 3 edges, and a vertex of degree 3 is a
K 3 together with an isolated vertex. If all the vertices that are not isolated have degree 2, then the graph
must consist of a Cy and 2 isolated vertices. The only way for there to be two vertices of degree 2 (and
therefore also 2 of degree 1) is for the graph to be three edges strung end to end, together with an isolated
vertex. The only other possibility is for 2 of the edges to be adjacent and the third to be not adjacent to
either of the others. All in all, then, we have the 4 possibilities shown below.

See [ReWi| for more information about graph enumeration problems of this sort (snch as Exercises 54,
56, and 68 in this section, Exercise 47 in Section 10.4, and supplementary exercises 2, 31, 32, and 40).

e N




56.

How many nonisomorphic simple graphs are there with
six vertices and four edges?

. There are 9 such graphs. Let us first look at the graphs that have a cycle in them. There is only 1 with a

4-cycle. There are 2 with a triangle, since the fourth edge can either be incident to the triangle or not. If
there are no cycles, then the edges may all be in one connected component (see Section 10.4), m which case
there are 3 possibilities (a path of length four., a path of length three with an edge incident to one of the
middle vertices on the path, and a star). Otherwise, there are two components, which are necessarily either
two paths of length two, a path of length three plus a single edge, or a star with three edges plus a single edge

(3 possibilities in this case as well).

n

. Are the simple graphs with the following adjacency ma-

trices isomorphic?

ayfo o 1] Jo 1 1
0 0 1(./1 0 0
11 0 0 0

bylo 1 0 1] [o 1 1 1
1 0 0 1| |1 0 0 1
00 0 1|t 0o 0 1
11 1 o) |11 o1 0]

ofo 1 1 0] [o 1 01
1 00 1| |1 0 0 0
1 0o 0 1[0 0 0 1
o 1 1 0] L1 0 1 0

57. a) Both graphs consist of 2 sides of a triangle; they are clearly isomorphic.
b) The graphs are not isomorphic, since the first has 4 edges and the second has 5 edges.
¢) The graphs are not isomorphic, since the first has 4 edges and the second has 3 edges.
58. Determine whcther_thc:graphs without_loops with these
incidence matrices are isomorphic.
a1 o 1] 1 1 o0
0 1 1 1 0 1
1 1 0] [0 1 1
b1t 1 0 0 ol fo 1 0 0 1
1 0 1 0 1 0o 1 1 1 0
00 0 1 1/'f1 0 0 1 0
o1 1 1 0 1 0 1 0 1

58. a) These graphs are both K3, so they are isomorphic.

b) These are both simple graphs with 4 vertices and 5 edges. Up to isomorphism there is only one such graph

(its complement is a single edge). so the graphs have to be isomorphic.



59. Extend the definition of isomorphism of simple graphs to
undirected graphs containing loops and multiple edges.

59. There are at least two approaches we could take here. One approach is to have a correspondence not only
of the vertices but also of the edges, with incidence (and nonincidence) preserved. In detail, we say that two
pseudographs G; = (V4,Et) and G9 = (Va, F3) are isomorphic if there are one-to-one and onto functions
f:V] —= Vs and g : £y — E3 such that for each vertex v € V| and edge € € E;, v 1s incident to e if and
only if f(v) is incident to g(e).

Another approach is simply to count the number of edges between pairs of vertices. Thus we can define
G1 = (Wi, E1) to be isomorphic to Go = (Va, E3) if there is a one-to-one and onto function f: V) — V5 such
that for every pair of (not necessarily distinct) vertices u and v in Vi, there are exactly the same number of

edges in E; with {u,v} as their set of endpoints as there are edges in E; with {f(u), f(v)} as their set of
endpoints.

60, Define isomorphism of directed graphs.

60. We need only modify the definition of isomorphism of simple graphs slightly. The directed graphs Gy =
(Vi, Ey) and Go = (Va, E5) are isomorphic if there is a one-to-one and onto function f: V; — V5 such that
for all pairs of vertices @ and b in Vi, (a,b) € E; if and only if (f(a), f(b)) € E.

In Exercises 61-64 determine whether the given pair of di-
rected graphs are isomorphic. (See Exercise 60.)

-
N/

61. We can tell by looking at the loop, the parallel edges, and the degrees of the vertices that if these directed graphs
are to be isomorphic, then the isomorphism has to be f(u;) = vy, f(ug) = v4, flug) = v, and fluy) = v,.
We then need to check that each directed edge (u,,u,) corresponds to a directed edge (f(uw,), f(u,)). We
check that indeed it does for each of the 7 edges (and there are only 7 edges in the second graph). Therefore
the two graphs are isomorphie.




62. i) i Vi ‘1.2

»
L] ly Vi Vy

62. These two graphs are not isomorphic. In the first there is no edge from the munique vertex of in-degree 0 ()

to the unique vertex of out-degree 0 (us), whereas in the second graph there is such an edge, namely vqvy.

63, Ity Vi
3] ] Va Vq

63. If there is to be an isomorphism, the vertices with the same in-degree would have to correspond, and the edge
between them would have to point in the same direction, so we would need »; to correspond to v, and us to
correspond to ;. Similarly we would need ug to correspond to 24, and w4 to correspond to wvy. If we check
all 6 edges under this correspondence, then we see that adjacencies are preserved (in the same direction), so
the graphs are isomorphic.

64.

My L] I3 V| V3

M ‘Jﬁ @ V3

iy lig g Vs vy

64. We claim that the digraphs are isomorphiec. To discover an isomorphism, we first note that vertices wy, us, and
ug in the first digraph are independent (i.e., have no edges joining them). as are wuy. us, and ug. Therefore
these two groups of vertices will have to correspond to similar groups in the second digraph, namely vy, vg,
and vy, and vg, vy, and vg, in some order. Furthermore, g is the only vertex among one of these groups of
u1's to be the only one in the group with out-degree 2, so it must correspond to vg, the vertex with the similar
property in the other digraph; and in the same manner, 1wy must correspond to v;. Now it is an easy matter,
by looking at where the edges lead, to see that the isomorphism (if there is one) must also pair up u; with vg;
ug with vy; ug with vy ; and ug with vq. Finally, we easily verify that this indeed gives an isomorphism-—each

directed edge in the first digraph is present precisely when the corresponding directed edge is present in the

second digraph.



*68. How many nonisomorphic directed simple graphs are

there with n vertices, when n is
a) 27 by 37 c) 47

68, a) There are 10 nonisomorphic directed graphs with 2 vertices. To see this, first consider graphs that have

no edges from one vertex to the other. There are 3 such graphs, depending on whether they have no, one, or
two loops. Similarly there are 3 in which there i1s an edge from each vertex to the other. Finally, there are 4
graphs that have exactly one edge between the vertices, because now the vertices are distinguished, and there
can be or fail to be a loop at each vertex.

b) A detailed discussion of the number of directed graphs with 3 vertices would be rather long, so we will
just give the answer, namely 104. There are some useful pictures relevant to this problem (and part (¢) as
well) in the appendix to Graph Theory by Frank Harary (Addison-Wesley, 1969).

¢) The answer is 3069.

#69, What is the product of the incidence matrix and its trans-

pose for an undirected graph?

69. Suppose that the graph has v vertices and e edges. Then the incidence matrix is a v x € matrix, so its

transpose is an € x v matrix. Therefore the product is a v x v matrix. Suppose that we denote the typical
entry of this product by a,,. Let ,; be the typical entry of the incidence matrix; it is either a 0 or a 1. By

e
Iy, = Z Ltk .
k=1

We can now read off the answer from this equation. If i # j, then a,, is just a count of the number of edges
incident to both ¢ and 7-—in other words, the number of edges between ¢ and j. On the other hand a,; is

definition

equal to the number of edges incident to 1.

*70

70.

How much storage is needed to represent a simple graph
with n vertices and m edges using

a) adjacency lists?
b) an adjacency matrix?

¢) an incidence matrix?

The answers depend on exactly how the storage is done, of course, but we will give naive answers that are at
least correct as approximations.

a) We need one adjacency list for each vertex, and the list needs some sort of name or header; this requires n
storage locations. In addition, each edge will appear twice, once in the list of each of its endpoints; this will
require 2m storage locations. Therefore we need n + 2m locations in all.

b) The adjacency matrix is a n X n matrix, so it requires n? bits of storage.

¢) The incidence matrix is a n x m matrix, so it requires nm bits of storage.



SECTION 10.4 Connectivity

Some of the most important uses of graphs deal with the notion of path, as the examples and exercises in
this and subsequent sections show. It is important to understand the definitions, of course. Many of the
exercises here are straightforward. The reader who wants to get a better feeling for what the arguments in
more advanced graph theory are like should tackle problems like Exercises 35-38.

1. Does each of these lists of vertices form a path in the
following graph? Which paths are simple? Which are cir-
cuits? What are the lengths of those that are paths?

a) a,e.b,c.b by a,e,a.d.b.c.a
c¢) e.b,a,d, b, e d) c.b.d,a.e.c
a b c

d £

1. a) This is a path of length 4, but it is not simple, since edge {b,c} is used twice. It is not a circuit, since it
ends at a different vertex from the one at which it began.
b) This is not a path, since there is no edge from ¢ to a.
c) This is not a path, since there is no edge from b to a.
d) This is a path of length 5 (it has 5 edges in it). It is simple, since no edge is repeated. It is a circuit since
it ends at the same vertex at which it began.

2. Does each of these lists of vertices form a path in the
following graph? Which paths are simple? Which are cir-
cuits? What are the lengths of those that are paths?

a) a,b,e,c. b b) a.d.a.d.a
¢) a. d.b,e,a d) a, b.e.c.b.d,a

2, a) This is a path of length 4, but it is not a cireuit, since it ends at a vertex other than the one at which it
began. It is simple, since no edges are repeated.
b) This is a path of length 4, which is a circuit. It is not simple, since it uses an edge more than once.
¢) This is not a path, since there is no edge from d to b.

d) This is not a path, since there is no edge from b to d.



In Exercises 3-5 determine whether the given graph is con-
nected.

AV

3. This graph is not connected—it has three components.

4, This graph is connected—it is easy to see that there is a path from every vertex to every other vertex.

5. This graph is not connected. There is no path from the vertices in one of the triangles to the vertices in the
other.

6. How many connected components does each of the
graphs in Exercises 3-5 have? For each graph find each
of its connected components.

6. The graph in Exercise 3 has three components: the piece that looks like a A, the piece that looks like a Vv, and
the isolated vertex. The graph in Exercise 4 is connected, with just one component. The graph in Exercise 5
has two components, each a triangle.

7. What do the connected components of acquaintanceship
graphs represent?

7. A comnected component of an acquaintanceship graph represent a maximal set of people with the property
that for any two of them, we can find a string of acquaintances that takes us from one to the other. The word
“maximal” here implies that nobody else can be added to this set of people without destroying this property.




8. What do the connected components of a collaboration
graph represent?

8. A connected component of a collaboration graph represent a maximal set of people with the property that for
any two of them, we can find a string of joint works that takes us from one to the other. The word “maximal”
here implies that nobody else can be added to this set of people without destroying this property.

9. Explain why in the collaboration graph of mathematicians
(see Example 3 in Section 10.1) a vertex representing a
mathematician is in the same connected component as the
vertex representing Paul ErdGs if and only if that mathe-
matician has a finite Erdos number.

9. If a person has Erdés number n, then there is a path of length 7 from that person to Erdds in the collaboration
graph. By definition, that means that that person is in the same component as Erdds. Conversely, if a person
is in the same component as Erdds, then there is a path from that person to Erdds, and the length of a shortest
such path is that person’s Erdés number.

10. In the Hollywood graph (see Example 3 in Section 10.1),
when is the vertex representing an actor in the same con-
nected component as the vertex representing Kevin Ba-
con?

10. An actor is in the same connected component as Kevin Bacon if there is a path from that person to Bacon.
This means that the actor was in a movie with someone who was in a movie with someone who ... who was
in a movie with Kevin Bacon. This includes Kevin Bacon, all actors who appeared in a movie with Kevin
Bacon, all actors who appeared in movies with those people, and so on.




11. Determine whether each of these graphs is strongly con-
nected and if not, whether it is weakly connected.

a) a b c b) :1 b c) b

11. a) Notice that there is no path from a to any other vertex, because both edges involving @ are directed
toward a. Therefore the graph is not strongly connected. However, the underlying undirected graph is clearly
connected, so this graph is weakly connected.

b) Notice that there is no path from ¢ to any other vertex, because both edges involving ¢ are directed
toward ¢. Therefore the graph is not strongly connected. However, the underlying undirected graph is clearly
connected, so this graph is weakly connected.

¢) The underlying undirected graph is clearly not connected (one component has vertices b, f, and e), so
this graph is neither strongly nor weakly connected.

12. Determine whether each of these graphs is strongly con-
nected and if not, whether it is weakly connected. ;

b
[ c c) a b c
a) a b [
d
_f d %
e _f &

12. a) Notice that there is no path from f to a, so the graph is not strongly connected. However, the underlying
undirected graph is clearly connected, so this graph is weakly connected.
b) Notice that the sequence a,b, e, d, e, f,a provides a path from every vertex to every other vertex, so this

graph is strongly connected.
¢) The underlying undirected graph is elearly not connected (one component consists of the triangle), so this

graph is neither strongly nor weakly connected.

13. What do the strongly connected components of a tele-
phone call graph represent?

13. The strongly connected components are the maximal sets of phone numbers for which it is possible to find
directed paths between every two different numbers in the set, where the existence of a directed path from
phone number z to another phone number 3 means that # called some number, which called another number,
..., which called y. (The number of intermediary phone numbers in this path can be any natural number.)



14. Find the strongly connected components of each of these

graphs.
a) a b c b) a b c
- - ‘
‘F
€ d f e d

a) The cycle baeb guarantees that these three vertices are in one strongly connected component. Since there
is no path from ¢ to any other vertex, and there is no path from any other vertex to d, these two vertices
are in strong components by themselves. Therefore the strongly connected components are {a,b,e}, {c}, and
{d}.

b) The cycle cdec gnarantees that these three vertices are in one strongly connected component. The vertices
a, b, and f are in strong components by themselves, since there are no paths both to and from each of these
to every other vertex. Therefore the strongly connected components are {a}, {b} {e,d,e}. and {f}.

c) The evele abedf ghia gnarantees that these eight vertices are in one strongly connected component. Since
there is no path from e to any other vertex, this vertex is in a strong component by itself. Therefore the
strongly connected components are {a,b,c.d, f,g.h,1} and {e}.




15. Find the strongly connected components of each of these

graphs.
by a_ b c d
1 — ___,»—-“"ff
]
] B ;“““-«H
1 g f e

c)

15. In each case we want to look for large sets of vertices all which of which have paths to all the others. For these
graphs, this can be done by inspection. These will be the strongly connected components.
a) Clearly {a,b, f} is a set of vertices with paths between all the vertices in the set. The same can be said of
{c,d,e}. Every edge between a vertex in the first set and a vertex in the second set is directed from the first,
to the second. Hence there are no paths from ¢, d, or e to a, b, or f, and therefore these vertices are not in
the same strongly connected component. Therefore these two sets are the strongly connected component.
b) The circuits a,e,d,c,b,a and a,e,d, h,a show that these six vertices are all in the same component. There
is no path from f to any of these vertices, and no path from g to any other vertex. Therefore f and g are
not in the same strong component as any other vertex. Therefore the strongly connected components are
{a,b,e,d e, h}, {f}, and {g}.
c) It is clear that a and 7 are in the same strongly connected component. If we look hard, we can also
find the circuit b, h, f, g, d, e,d, b, so these vertices are in the same strongly connected component. Because of
edges ig and hi, we can get from either of these collections to the other. Thus {a, b,d, e, f, g, h.,i} is a strong
component. We cannot travel from ¢ to any other vertex, so ¢ is in a component by itself.

Suppose that G = (V, E) is a directed graph. A vertex w € V
is reachable from a vertex v € V if there is a directed path
from v to w. The vertices v and w are mutually reachable if
there are both a directed path from v to w and a directed path
fromwtovinG.

16. Show thatif G = (V, E) is adirected graph and u, v, and
w are vertices in V for which u and v are mutually reach-
able and v and w are mutually reachable, then 1 and w
are mutually reachable.

16. The given conditions imply that there is a path from » to v, a path from v to w, a path from » to w,
and a path from w to v. Concatenating the first and third of these paths gives a path from « to w, and
concatenating the fourth and second of these paths gives a path from w to w. Therefore w and w are mutually
reachable.




17. Show that if &G = (V, E) is a directed graph, then the
strong components of two vertices 4 and v of V are either
the same or disjoint. [Hint: Use Exercise 16.]

17. The hardest part of this exercise is figuring out what we need to prove. It is enough to prove that if the strong
components of u and v are not disjoint then they are the same. So suppose that w is a vertex that is in
both the strong component of 1 and the strong component of v. (It is enough to consider the vertices in
these components, because the edges in a strong component are just all the edges joining the vertices in that
component.) This means that there are directed paths (in each direction) between u and w and between v
and w. It follows that there are directed paths from w to v and from v to u, via w. Suppose z is a vertex
in the strong component of . Then x is also in the strong component of v, because there is a path from «
to v (namely the path from x to u followed by the path from u to v) and vice versa.

18. Show that all vertices visited in a directed path connecting
two vertices in the same strongly connected component
of a directed graph are also in this strongly connected

component.

by

18. Let a,b,c,...,z be the directed path. Since z and a are in the same strongly connected component, there
is a directed path from z to a. This path appended to the given path gives us a circuit. We can reach any
vertex on the original path from any other vertex on that path by going around this circuit.

19. Find the number of paths of length 1 between two differ-
ent vertices in K4 if n is

a) 2. b) 3. c) 4. d) 5.

19. One approach here is simply to invoke Theorem 2 and take successive powers of the adjacency matrix

01 11
1 011
A*1101
1110

The answers are the off-diagonal elements of these powers. An alternative approach is to argue combinatorially
as follows. Without loss of generality, we assume that the vertices are called 1,2, 3,4, and the path is to run
from 1 to 2. A path of length »n is determined by choosing the n — 1 intermediate vertices. Each vertex in
the path must differ from the one immediately preceding it.

a) A path of length 2 requires the choice of 1 intermediate vertex, which must be different from both of the
ends. Vertices 3 and 4 are the only ones available. Therefore the answer is 2.

b) Let the path be denoted 1,z,y,2. If = = 2, then there are 3 choices for y. If = = 3, then there are 2
choices for y; similarly if > = 4. Therefore there are 3 + 2 + 2 = 7 possibilities in all.

¢) Let the path be denoted 1,.,y,2,2. If = 3, then by part (b) there are 7 choices for y and z. Similarly
if 2 =4. If £ = 2, then y and z can be any two distinct members of {1,3,4}, and there are P(3,2) =6
ways to choose them. Therefore there are 74 7 4 6 = 20 possibilities in all.

d) Let the path be denoted 1,u,z,y,2 2. If w = 3, then by part (c) there are 20 choices for x, y, and z.
Similarly if w = 4. If w = 2, then z must be different from 2, and there are 3 choices for x. For each of
these there are by part (b) T choices for y and z. This gives a total of 21 possibilities in this case. Therefore
the answer is 20 + 20 4 21 = 61.



20. Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between these graphs.
Hl [rE 1'| Vn

2

g U Vs Vg

g iy Vg Vg

1'14 H_] 1'4 1'3
G H

20. The graph & has a simple closed path containing exactly the vertices of degree 3, namely wjusugusuy. The

graph H has no simple closed path containing exactly the vertices of degree 3. Therefore the two graphs are
not isomorphic.

21. Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between them.

) ] v Va2
g iy Vg -/. \- V3
-”IT H4 1"Ir 1'_1
S,
-, ; L
g s Ve Vs
G H

21. Graph ¢ has a triangle (u;, u2,uz ). Graph H does not (in fact, it is bipartite). Therefore G and H are not
isomorphic.

22, Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between them.

i Uy Vi Va
g i3 Vg V3

ti7 iy Ve V4

22, We notice that there are two vertices in each graph that are not in cycles of size 4. So let us try to construct
an isomorphism that matches them, say wy < vy and wug < vg. Now wy is adjacent to us and wug, and ws
is adjacent to »; and vg, so We try us <+ vy and ug < vg. Then since u, is the other vertex adjacent to
ug and vy is the other vertex adjacent to vy (and we already matched ws and vy ), we must have wy < vy.
Proceeding along similar lines, we then complete the bijection with wg < ws, ug < v, and wr < v;. Having
thus been led to the only possible isomorphism, we check that the 12 edges of G exactly correspond to the
12 edges of H., and we have proved that the two graphs are isomorphic.



23. Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between them.

iy [}

g uy

ity it

23. The drawing of G clearly shows it to be the cube Q3. Can we see H as a cube as well? Yes—we can view the
outer ring as the top face, and the inner ring as the bottom face. We can imagine walking around the top face
of G clockwise (as viewed from above), then dropping down to the bottom face and walking around it counter-
clockwise, finally returning to the starting point on the top face. This is the path wy, ue, u7, ug, us, 14, ua, ug, U1 .
The corresponding path in H is vy, v9, v3, ¥4, U5, Vs, Ur, Ug, v1. We can verify that the edges not in the path
do connect corresponding vertices. Therefore G = H.

24, Find the number of paths of length n between any two ad-
jacent vertices in K3 3 for the values of n in Exercise 19.

24. a) Adjacent vertices are in different parts, so every path between them must have odd length. Therefore there

are no paths of length 2.

b) A path of length 3 is specified by choosing a vertex in one part for the second vertex in the path and a
vertex in the other part for the third vertex in the path (the first and fourth vertices are the given adjacent

vertices). Therefore there are 3 -3 = 9 paths.

25, Find the number of paths of length n between any two
nonadjacent vertices in K3 3 for the values of n in Exer-
cise 19,

25. As explained in the solution to Exercise 19, we could take powers of the adjacency matrix

0 0
0 0
0 0
A=1,
11
11

The answers are found in location (1,2}, for instance. Using the alternative approach is much easier than in
Exercise 19. First of all, two nonadjacent vertices must lie in the same part, so only paths of even length can

join them. Also, there are clearly 3 choices for each intermediate vertex in a path. Therefore we have the

following answers:
a) 31 =3 b) 0 c) 3 =27 d) 0

0
0

i e}

1
1
1
¢
0

0

1
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26. Find the number of paths between ¢ and d in the graph in
Figure 1 of length

a) 2. b) 3. c) 4. d) 5. e) 6. 7.

26. Probably the best way to do this is to write down the adjacency matrix for this graph and then compute its
powers. The matrix is

01 01 10
1 01011
0101 01
A=l1 01010
1 10101
011010
a) To find the number of paths of length 2, we need to look at A?, which is
31 2 1 2 2
1 41 3 2 2
21 3 0 3 1
1 3 0 3 1 2
2 2 3 1 41
221 2 1 3

Since the (3, '-1)“' entry is 0, so there are no paths of length 2.

b) The (3, 4)™" entry of A® turns out to be 8, so there are 8 paths of length 3.

c) The (3, 4)“1 entry of A* turns out to be 10, so there are 10 paths of length 4.
d) The (3,4)*" entry of A® turns out to be 73, so there are 73 paths of length 5.
e) The (3, 4)*h entry of A® turns out to be 160. so there are 160 paths of length 6.
f) The (3,4)“‘ entry of A7 turns out to be 739, so there are 739 paths of length 7.

27. Find the number of paths froma to ¢ in the directed graph
in Exercise 2 of length

a) 2. b) 3. c) 4. dj 5. e) 6. f)7.

27. There are two approaches here. We could use matrix multiplication on the adjacency matrix of this directed
graph (by Theorem 2), which is

01 0 1 0
1.0 0 01
A=1|0 1 0 0 0
1 00 0 0
001 10

Thus we can compute A2 for part (a), A? for part (b), and so on, and look at the (1,5)*" entry to determine
the number of paths from a to e. Alternately, we can argue in an ad hoc manner, as we do below.

a) There is just 1 path of length 2, namely a,b,e.

b) There are no paths of length 3, since after 3 steps, a path starting at a must be at b, ¢, or d.

¢) For a path of length 4 to end at e, it must be at b after 3 steps. There are only 2 such paths, a,b,a,b,e
and a,d,a,b,e.

d) The only way for a path of length 5 to end at e is for the path to go around the triangle bec. Therefore
only the path a,b, €, ¢,b,e is possible.

e) There are several possibilities for a path of length 6. Since the only way to get to e is from b, we are asking
for the number of paths of length 5 from a to b. We can go around the square {a,b,e,d, a,b), or else we can
jog over to either b or d and back twice—there being 4 ways to choose where to do the jogging. Therefore
there are 5 paths in all.

f) As in part (d), it is clear that we have to use the triangle. We can either have a,b,a,b,e,¢,b,e or
a,d,a,b,e,c,be or a,b,e,c, b, a,b,e. Thus there are 3 paths.



#28. Show that every connected graph with n vertices has at
least n — 1 edges.

28. We show this by induction on n. For n» = 1 there is nothing to prove. Now assume the inductive hypothesis,
and let G be a connected graph with n + 1 vertices and fewer than n edges, where n > 1. Since the sum
of the degrees of the vertices of & is equal to 2 times the number of edges, we know that the sum of the
degrees is less than 2n, which is less than 2(n + 1). Therefore some vertex has degree less than 2. Since G
is connected, this vertex is not isolated, so it must have degree 1. Remove this vertex and its edge. Clearly
the result is still connected, and it has n vertices and fewer than n — 1 edges, contradicting the inductive
hypothesis. Therefore the statement holds for &, and the proof is complete.

29, Let G = (V. E) be a simple graph. Let R be the relation
on V consisting of pairs of vertices (u, v) such that there
is a path from u to v or such that u = v. Show that R is
an equivalence relation.

29, The definition given here makes it clear that » and v are related if and only if they are in the same component—

in other words f(u) = f(v) where f(z) is the component in which x lies. Therefore by Exercise 9 in Section 9.5
this is an equivalence relation.

#30. Show that in every simple graph there is a path from every
vertex of odd degree to some other vertex of odd degree.

30, Let v be a vertex of odd degree, and let H be the component of & containing ». Then H is a graph itself,
so it has an even number of vertices of odd degree. In particular, there is another vertex w in H with odd
degree. By definition of connectivity, there is a path from v to w.




In Exercises 31-33 find all the cut vertices of the given graph.

31. a d € 32.a f
—&
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31. A cut vertex is one whose removal splits the graph into more components than it originally had (which is 1
in this case). Only vertex c is a cut vertex here. If it is removed, then the resulting graph will have two
components. If any other vertex is removed, then the graph remains connected.

32. Vertices ¢ and d are the cut vertices. The removal of either one creates a graph with two components. The
removal of any other vertex does not disconnect the graph.

33. There are several cut vertices here: b, ¢, e, and ¢. Removing any of these vertices creates a graph with more
than one component. The removal of any of the other vertices leaves a graph with just one component.

34. Find all the cut edges in the graphs in Exercises 31-33.

34. The graph in Exercise 31 has no cut edges; any edge can be removed, and the result is still connected. For
the graph in Exercise 32, {e,d} is the only cut edge. There are several cut edges for the graph in Exercise 33:

{a,b}, {b,c}. {c.d}, {c.e}, {e.i}, and {h,:}.

# 35, Suppose that v is an endpoint of a cut edge. Prove that v
is a cut vertex if and only if this vertex is not pendant.

35. Without loss of generality, we can restrict our attention to the component in which the cut edge lies; other
components of the graph are irrelevant to this proposition. To fix notation, let the cut edge be uv. When the
cut edge is removed, the graph has two components, one of which contains v and the other of which contains w.
If v is pendant, then it is clear that the removal of v results in exactly the component containing u—a
connected graph. Therefore v is not a cut vertex in this case. On the other hand, if v is not pendant, then
there are other vertices in the component containing v-—at least one other vertex w adjacent to v. (We are
assuming that this proposition refers to a simple graph, so that there is no loop at v.) Therefore when v is
removed, there are at least two components, one containing v and another containing w.



*36. Show that a vertex ¢ in the connected simple graph G is
a cut vertex if and only if there are vertices u and v, both
different from ¢, such that every path between u and v
passes through c.

36. First we show that if ¢ is a cut vertex, then there exist vertices u and v such that every path between them
passes through e. Since the removal of ¢ increases the number of components, there must be two vertices in
(- that are in different components after the removal of ¢. Then every path between these two vertices has
to pass through c. Conversely, if v and v are as specified, then they must be in different components of the
graph with ¢ removed. Therefore the removal of ¢ resulted in at least two components, so ¢ 18 a cut vertex.

*37. Show that a simple graph with at least two vertices has at
least two vertices that are not cut vertices.

37. If every component of G is a single vertex, then clearly no vertex is a cut vertex (the removal of any of them
actually decreases the number of components rather than increasing it). Therefore we may as well assume

#38. Show that an edge in a simple graph is a cut edge if and
only if this edge is not part of any simple circuit in the

graph.

38. First suppose that e = {u,v} is a cut edge. Every circuit containing e must contain a path from = to v» in
addition to just the edge e. Since there are no such paths if e is removed from the graph, every such path
must contain e. Thus e appears twice in the circuit, so the circuit is not simple. Conversely, suppose that e
is not a cut edge. Then in the graph with e deleted « and v are still in the same component. Therefore there
is a simple path P from w to v in this deleted graph. The circuit consisting of P followed by e is a simple
circuit containing e.




39, A communications link in a network should be provided
with a backup link if its failure makes it impossible for
some message to be sent. For each of the communications
networks shown here in (a) and (b), determine those links
that should be backed up.

) Boston
Chicago
— s New York
San Francisco _______,_Fr-”’”'."_ﬁ——_______
Denver Washington

Los Angeles
b) Bangor
Seatle Portland Burlington /-

[ / Boston

5 Denver Chi
' an i New York

Washington

™~
Salt Lake
Los City
Angeles

39. This problem is simply asking for the cut edges of these graphs.
a) The link joining Denver and Chicago and the link joining Boston and New York are the cut edges.

b) The following links are the cut edges: Seattle-Portland, Portland-San Francisco, Salt Lake City-Denver,
New York-Boston, Boston-Bangor, Boston—Burlington.

A vertex basis in a directed graph G is a minimal set B of
vertices of G such that for each vertex v of & not in B there
is a path to v from some vertex B.

40. Find a vertex basis for each of the directed graphs in Ex-
ercises 7-9 of Section 10.2.

40. In the directed graph in Exercise 7. there is a path from b to each of the other three vertices, so {b} is a
vertex basis (and a smallest one). It is easy to see that {c} and {d} are also vertex bases, but a is not in any
vertex basis. For the directed graph in Exercise 8, there is a path from b to each of e and ¢; on the other
hand, d must clearly be in every vertex basis. Thus {b,d} is a smallest vertex basis. So are {a.d} and {c,d}.
Every vertex basis for the directed graph in Exercise 9 must contain vertex e, since it has no incoming edges.
On the other hand, from any other vertex we can reach all the other vertices, so e together with any one of
the other four vertices will form a vertex basis.




41. What is the significance of a vertex basis in an influence
graph (described in Example 2 of Section 10.1)? Find a
vertex basis in the influence graph in that example.

41. A vertex basis will be a set of people who collectively can influence everyone, at least indirectly, but none of
whom influences another member of that set (otherwise the set would not be minimal). The set consisting

of Deborah is a vertex basis, since she can influence everyone except Yvonne directly, and she can influence
Yvonne indirectly through Brian.

42, Show that if a connected simple graph G is the union of
the graphs G| and G2, then G and Gz have at least one
COmMmMON Vertex.

42. By definition of graph, both &, and G2 are nonempty. If they have no common vertex, then there clearly can
be no paths from vy € G to v € G2. In that case & would not be connected, contradicting the hypothesis.

#43, Show that if a simple graph G has k connected compo-

nents and these components haven, nz, . .., ng vertices,
respectively. then the number of edges of G does not ex-
ceed

k
E Cin;, 2).

i=1

43. Since there can be no edges between vertices in different components, G will have the most edges when each
of the components is a complete graph. Since K, has C(n,,2) edges, the maximum number of edges is the

sum given in the exercise.




*44,

44.

Use Exercise 43 to show that a simple graph with n
vertices and & connected components has at most (n —
k)(n — k4 1)/2 edges. [Hint: First show that

k
Y nf=n?—(k—1)2n—k),
i=1

where n; 1s the number of vertices in the ith connected
component. ]

First we obtain the inequality given in the hint. We claim that the maximum value of 3 nZ, subject to the
constraint that 3" n; = n, is obtained when one of the n;’s is as large as possible, namely n — k+ 1, and the
remaining n;’s (there are & — 1 of them) are all equal to 1. To justify this claim, suppose instead that two of
the n;’s were a and b, with a > b > 2. If we replace a by e+ 1 and b by b — 1, then the constraint is still
satisfied, and the sum of the squares has changed by (a+1)2 4+ (b—1)2 —a? —b? = 2(a —b) +2 > 2. Therefore
the maximum cannot be attained unless the n;’s are as we claimed. Since there are only a finite number
of possibilities for the distribution of the n;’s, the arrangement we give must in fact yleld the maximum.
Therefore " n? < (n—k+1)2+(k—1)-12=n2 — (k- 1)(2n — k), as desired.

Now by Exercise 43, the number of edges of the given graph does not exceed Y C(n;,2) = 3 (n7 +n;)/2 =
(3 n?)+n)/2. Applying the inequality obtained above, we see that this does not exceed (n? — (k—1)(2n —
k) + n)/2, which after a little algebra is seen to equal (n — k)(n — k + 1)/2. The upshot of all this is that
the most edges are obtained if there is one component as large as possible, with all the other components

consisting of isolated vertices.

*45,

45.

Show that a simple graph G with n vertices is connected
if it has more than (n — 1)(n — 2)/2 edges.

Before we give a correct proof here, let us look at an incorrect proof that students often give for this exercise.
It goes something like this. “Suppose that the graph is not connected. Then no vertex can be adjacent to
every other vertex, only to n —2 other vertices. One vertex joined to n— 2 other vertices creates a component
with n — 1 vertices in it. To get the most edges possible, we must use all the edges in this component. The
number of edges in this component is thus C{n—1,2) = (n—1)(n—2)/2, and the other component (with only
one vertex) has no edges. Thus we have shown that a disconnected graph has at most (n — 1)(n — 2)/2 edges,
so every graph with more edges than that has to be connected.” The fallacy here is in assuming-—without
justification—that the maximum number of edges is achieved when one component has n — 1 vertices. What
if, say, there were two components of roughly equal size? Might they not together contain more edges? We will
see that the answer is “no,” but it is important to realize that this requires proof—it is not obvious without
some calculations.

Here is a correct proof, then. Suppose that the graph is not connected. Then it has a component with k
vertices in it, for some k between 1 and n—1, inclusive. The remaining n—k vertices are in one or more other
components. The maximum number of edges this graph could have is then C{k,2) + C(n — k, 2), which, after
a bit of algebra, simplifies to k? — nk + (n? — n)/2. This is a quadratic function of k. It is minimized when
k=mn/2 (the k coordinate of the vertex of the parabola that is the graph of this function) and maximized at
the endpoints of the domain, namely k =1 and k =n — 1. In the latter cases its value is (n — 1)(n — 2)/2.
Therefore the largest number of edges that a disconnected graph can have is (n —1)(n — 2)/2, so every graph
with more edges than this must be connected.



46. Describe the adjacency matrix of a graph with n con-
nected components when the vertices of the graph are
listed so that vertices in each connected component are
listed successively.

46. Under these conditions, the matrix has a block structure, with all the 1's confined to small squares (of various
sizes) along the main diagonal. The reason for this is that there are no edges between different components.
See the picture for a schematic view. The only 1's occur inside the small submatrices (but not all the entries
in these squares are 1's, of course).

(1, o

[ ]
0 o,
[]

48. Show that each of the following graphs has no cut ver-
tices.

a) C, wheren = 3
b) W, wheren = 3
¢) Kypwherem =2andn = 2
d)y Q, wheren =2

48. a) If any vertex is removed from ;. the graph that remains is a connected graph, namely a path with n—1
vertices.
b) If the central vertex is removed, the resulting graph is a cycle, which is connected. If a vertex on the cycle
of W, is removed, the resulting graph is connected because every remaining vertex on the cyele is joined to
the central vertex.
c) Let v be a vertex in one part and w a vertex in the other part, after some vertex has been removed (these
exists because m and n are both greater than 1). Then v and w are joined by an edge, and every other
vertex is joined by an edge to either v or w, giving us a connected graph.

d) We can use mathematical induction, based on the recursive definition of the n-cubes (see Example 8 in
Section 10.2). The basis step is @2, which is the same as Cy, and we argued in part (a) that it has no cut
vertex. Assume the inductive hypothesis. Let & be ()p41 with a vertex removed. Then & consists of a copy
of )., which is certainly connected, a copy of ¢J; with a vertex removed, which is connected by the inductive
hypothesis, and at least one edge joining those two subgraphs; therefore ' is connected.



47. How many nonisomorphic connected simple graphs are
there with n vertices when n is

a) 27 b) 37 c) 47 d) 57

47. We have to enumerate carefully all the possibilities.
a) There is obviously only 1, namely K, the graph consisting of two vertices and the edge between them.
b) There are clearly 2 connected graphs with 3 vertices, namely K3 and K3 with one edge deleted, as

A A

c) There are several connected graphs with n = 4. If the graph has no circuits, then it must either be a path
of length 3 or the “star” K, 3. If it contains a triangle but no copy of Cl4, then the other vertex must be
pendant—only 1 possibility. If it contains a copy of C4, then neither, one, or both of the other two edges
may be present—3 possibilities. Therefore the answer is 2 + 1+ 3 = 6. The graphs are shown below.

O N K 2
*——o 4 r

d) We need to enumerate the possibilities in some systematic way, such as by the largest cycle contained in
the graph. There are 21 such graphs, as can be seen by such an enumeration, shown below. First we show
those graphs with no circuits, then those with a triangle but no Cy or Cj, then those with a Cy but no C5,

and finally those with a C5. In doing this problem we have to be careful not only not to leave out any graphs,
but also not to list any twice,
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49. Show that each of the graphs in Exercise 48 has no cut
edges.

49. In each case we just need to verify that the removal of an edge will not disconnect the graph.
a) Removing an edge from a cycle leaves a path, which is still connected.
b) Removing an edge from the cycle portion of the wheel leaves that portion still connected as in part (a),
and the central vertex is clearly still connected to it as well. Removing a spoke leaves the cycle intact and the
central vertex still connected to it as well.
c) Let u, v, a, b be any four vertices of K,, , with 4 and v in one part and a and b in the other. They are
connected by the 4-cycle uavh. Removing one edge will not disconnect this 4-cycle, so these vertices are still
connected, and the entire graph is therefore still connected. Note that we needed m,n > 2 for this to work
(and for the statement to be true).
d) Think of @, as two copies of @,_1 with corresponding vertices joined by an edge. Without loss of
generality we can assume that the removed edge is one of the edges joining corresponding vertices. Since each
@1 is connected and at least one edge remains joining the two copies, the resulting graph is connected.

50. For each of these graphs, find «(G), A(G), and
min,y deg(v), and determine which of the two inequal-
ities in k(G) = A(G) < min,y deg(v) are strict.

a) o4 c

50. a) Removing vertex b leaves two components, so x(G) = 1. Removing one edge does not disconnect the graph,
but removing edges ab and eb do disconnect the graph, so A(G) = 2. The minimum degree is clearly 2. Thus
only k(G) < A(G) is strict.

b) Removing vertex c leaves two components, so «(G) = 1. It is not hard to see that removing two edges does
not disconnect the graph, but removing the three edges incident to vertex a, for example, does. Therefore
A(G) = 3. Since the minimum degree is also 3, only &(G) < A(G) is a strict inequality.

c) It is easy to see that removing only one vertex or one edge does not disconnect this graph, but removing
vertices a and k, or removing edges ab and kI, does. Therefore k(G) = A(G) = 2. Since the minimum degree
is 3, only the inequality A(G) < min,cy deg(v) is strict.

d) With a little effort we see that x(G) = A(G) = min, v deg(v) = 4, so none of the inequalities is strict.



51. Show that if G is a connected graph, then it is possible to
remove vertices to disconnect G if and only if G is not a
complete graph.

51. If G is complete, then removing vertices one by one leaves a complete graph at each step, so we never get a
disconnected graph. Conversely. if G is not complete, say with edge uv missing, then removing all the vertices
except v and v creates the disconnected graph consisting of just those two vertices.

52. Show thatif G is a connected graph with a1 vertices then
a) k(G)=n—1ifand only if G = K,,.
b) A(G)=n —1ifand only if G = K,,.

a) According to the discussion following Example 7, (K, ) = n — 1. Conversely, if & is a graph with n
vertices other than K, let w and v be two nonadjacent vertices of . Then removing the n — 2 vertices
other than » and » disconnects G, so k(G) <n—1.

b) Since k(K,) < A(K,) < min,cx, deg(v) (see the discussion following Example 9) and the outside quantities

are both n — 1, it follows that A(K,,) =n — 1. Conversely, if G is not K, , then its minimum degree is less
than n — 1, so it edge connectivity is also less than n — 1.

54. Construct a graph G with x(G) =1, A(G) =2, and
min,-y deg(v) = 3.

54. Here is one example.




57. Use Theorem 2 to find the length of the shortest path
between a and f in the graph in Figure 1.

57. We need to look at successive powers of the adjacency matrix until we find one in which the (1,6)* entry is
not 0. Since the matrix is

010110
101011
0101 01
A'101010'
1 10101
011010

we see that the (1,6)"" entry of A% is 2. Thus there is a path of length 2 from a to f (in fact 2 of them).
On the other hand there is no path of length 1 from a to f (i.e., no edge), so the length of a shortest path
is 2.

58. Use Theorem 2 to find the length of the shortest path from
a to ¢ in the directed graph in Exercise 2.

58. First we write down the adjacency matrix for this graph, namely

01 010
10 0 01
A=101 0 0 0
1 00 00
00110

Then we compute A? and A®, and look at the (1, 3)”1 entry of each. We find that these entries are 0 and 1,
respectively. By the reasoning given in Exercise 57, we conclude that a shortest path has length 3.

L5759, Let Py and P; be two simple paths between the vertices u
and v in the simple graph G that do not contain the same
set of edges. Show that there is a simple circuit in G

59. Let the simple paths P, and P; be v = xg,2y,...,24 = v and © = ¥,Y1,...,Ym = v, respectively. The
paths thus start out at the same vertex. Since the paths do not contain the same set of edges, they must
diverge eventually. If they diverge only after one of them has ended, then the rest of the other path is a simple
circuit from v to v. Otherwise we can suppose that g = yo, T1 = ¥1. ..., £, = ¥, but T,y 1 # Yiz1 . To form
our simple circuit, we follow the path v, %h+1, ¥i+2, and so on, until it once again first encounters a vertex
on P (possibly as early as y,41. no later than y,, ). Once we are back on P;, we follow it along—forwards or
backwards, as necessary—to return to z,. Since z, = y,, this certainly forms a circuit. It must be a simple
circuit, since no edge among the zx’s or the y;'s can be repeated ( P; and P, are simple by hypothesis) and
no edge among the zi's can equal one of the edges y; that we used, since we abandoned P; for P, as soon
as we hit P;.



SECTION 10.5 Euler and Hamilton Paths

An Euler circuit or Euler path uses every edge exactly once. A Hamilton circuit or Hamilton path uses every
vertex exactly once (not counting the circuit’s return to its starting vertex). Euler and Hamilton circuits and
paths have an important place in the history of graph theory, and as we see in this section they have some
interesting applications. They provide a nice contrast—there are good algorithms for finding Euler paths (see
also Exercises 50-53), but computer scientists believe that there is no good (efficient) algorithm for finding
Hamilton paths.

Most of these exercises are straightforward. The reader should at least look at Exercises 16 and 17 to see
how the concept of Euler path applies to directed graphs—these exercises are not hard if you understood the
proof of Theorem 1 (given in the text before the statement of the theorem).

In Exercises 1-8 determine whether the given graph has an
Euler circuit. Construct such a circuit when one exists. If
no Euler circuit exists, determine whether the graph has an
Euler path and construct such a path if one exists.

1. b C

1. Since there are four vertices of odd degree (a, b, ¢, and ¢) and 4 > 2, this graph has neither an Euler circuit
nor an Euler path.

3. a b
2. a b c v/
d o f i
g h i ¢ d

2. All the vertex degrees are even, so there 1s an Euler circuit. We can find one by trial and error, or by using

Algorithm 1. One such circuit 18 a, b, e, f, i, h, g, d. e, h, f,e, b, d, a.

3. Since there are two vertices of odd degree (a and d), this graph has no Euler circuit, but it does have an
Euler path starting at a and ending at d. We can find such a path by inspection, or by using the splicing
idea explained in this section. One such path is a,¢,c,e, b,e.d. b, a,c,d.



b

4. This graph has no Euler circuit, since the degree of vertex ¢ (for one) is odd. There is an Euler path between

the two vertices of odd degree. One such path is f,a,b,e.d, e, f,b,d.a, e, c.

5. All the vertex degrees are even, so there is an Euler circuit. We can find such a circuit by inspection, or by

using the splicing idea explained in this section. One such circuit is a, b, ¢, d,c, e, d, b, e, a, e, a.

a b C d

6. This graph has no Euler circuit, since the degree of vertex b (for one) is odd. There is an Euler path between

the two vertices of odd degree. One such path 1s b,e,d, e, f,d,g,i,d,a,h,i,a.b, 1, c.

7. All the vertex degrees are even, so there is an Euler circuit. We can find such a circuit by inspection, or by
using the splicing idea explained in this section. One such circuit is a,b,¢,d,e, f.g.h,%,a, h, b, i,¢,e,h,d, g,

C, .
8 a b c d e
I 2 h i i
k ? m ; o

8. All the vertex degrees are even, so there is an Euler circuit. We can find one by trial and error, or by using

Algorithm 1. One such circuit 1s a, b, e, d,e.j, ¢, h,i,d, b, g, h,m,n,0,5,5,n,l,m, f,g. L.k, f.a.



9, Suppose that in addition to the seven bridges of Konigs-
berg (shown in Figure 1) there were two additional
bridges, connecting regions B and C and regions B and
D, respectively. Could someone cross all nine of these
bridges exactly once and return to the starting point?

9. No, an Euler cirenit does not exist in the graph modeling this hypothetical city either. Vertices A and B
have odd degree.

10. Can someone cross all the bridges shown in this map ex-
actly once and return to the starting point?

10. The graph model for this exercise is as shown here.

a

Vertices a and b are the banks of the river, and vertices ¢ and d are the islands. Each vertex has even degree,

s0 the graph has an Euler circuit, such as a, ¢, b, a,d, ¢, a. Therefore a walk of the type described is possible.

11. When can the centerlines of the streets in a city be painted
without traveling a street more than once? (Assume that

all the streets are two-way streets.)

11. Assuming we have just one truck to do the painting, the truck must follow an Euler path through the streets
in order to do the job without traveling a street twice. Therefore this can be done precisely when there is
an Euler path or circuit in the graph, which means that either zero or two vertices (intersections} have odd
degree (number of streets meeting there). We are assuming, of course, that the city is connected.




12. Devise a procedure, similar to Algorithm 1, for construct-
ing Euler paths in multigraphs.

In Exercises 13—135 determine whether the picture shown can
be drawn with a pencil in a continuous motion without lifting
the pencil or retracing part of the picture.

12. The algorithm is essentially the same as Algorithm 1. If there are no vertices of add degree, then we simply
use Algorithm 1, of course. If there are exactly two vertices of odd degree, then we begin constructing the
initial path at one such vertex, and it will necessarily end at the other when it cannot be extended any further.
Thereafter we follow Algorithm 1 exactly, splicing new circuits into the path we have constructed so far until

no unused edges remain.

In Exercises 13—15 determine whether the picture shown can
be drawn with a pencil in a continuous motion without lifting
the pencil or retracing part of the picture.

13. 14.

13. In order for the picture to be drawn under the conditions of Exercises 13-15, the graph formed by the picture
must have an Euler path or Euler circuit. Note that all of these graphs are connected. The graph in the
current exercise has all vertices of even degree; therefore it has an Euler circuit and can be so traced.

14. See the comments in the solution to Exercise 13. This graph has exactly two vertices of odd degree; therefore

it has an Euler path and can be so traced.

15. See the comments in the solution to Exercise 13. This graph has 4 vertices of odd degree; therefore it has no
Euler path or circuit and cannot be so traced.

*16. Show that a directed multigraph having no isolated ver-
tices has an Euler circuit if and only if the graph is weakly
connected and the in-degree and out-degree of each vertex
are equal.

16. First suppose that the directed multigraph has an Euler circuit. Since this cirenit provides a path from every
vertex to every other vertex, the graph must be strongly connected (and hence also weakly connected). Also,
we can count the in-degrees and out-degrees of the vertices by following this circuit; as the circuit passes
through a vertex, it adds one to the count of both the in-degree (as it comes in) and the out-degree (as it

leaves). Therefore the two degrees are equal for each vertex.

Conversely, suppose that the graph meets the conditions stated. Then we can proceed as in the proof of
Theorem 1 and construct an Euler circuit.



In Exercises 18-23 determine whether the directed graph
shown has an Euler circuit. Construct an Euler circuit if one
exists. If no Euler circuit exists, determine whether the di-
rected graph has an Euler path. Construct an Euler path if one
exists.

18. a b

18. For Exercises 18-23 we use the results of Fxercises 16 and 17. This directed graph satisfies the condition of
Exercise 17 but not that of Exercise 16. Therefore there is no Euler circuit. The Euler path must go from a

to d. One such path 1s a.b,d, b, c,d, e, a.d.

19, For Exercises 18 23 we use the results of Exercises 16 and 17. By Exercise 16, we cannot hope to find an
Euler circuit since vertex b has different out-degree and in-degree. By Exercise 17, we cannot hope to find an
Euler path since vertex b has out-degree and in-degree differing by 2.

20, a b c
L

d €

20. The conditions of Exercise 16 are met, so there is an Euler circuit, which is perforce also an Euler path. One
such path 1s a,d,b,d, e, b, e, e, b, a.

21. This directed graph satisfies the condition of Exercise 17 but not that of Exercise 16. Therefore there is no
Euler circuit. The Euler path must go from a to . One such path is a,d, e, d, b, a,e,ec,e, b, e, b.e.




23. a b c
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22. This directed graph satisfies the condition of Exercise 17 but not that of Exercise 16. Therefore there is no

Euler circuit. The Euler path must go from ¢ to b. One such path is ¢,e,b,d, e, b, f,d, e, f.e,a, f,a.b,eb.
(There is no Euler cirenit, however, since the conditions of Exercise 16 are not met.)

23. There are more than two vertices whose in-degree and out-degree differ by 1, so by Exercises 16 and 17, there

is no Euler path or Euler circuit.

#24. Devise an algorithm for constructing Euler circuits in di-

rected graphs.

24, The algorithm 1is 1dentical to Algorithm 1.

25.

25.

Devise an algorithm for constructing Euler paths in di-
rected graphs.

The algorithm is very similar to Algorithm 1. The input is a weakly connected directed multigraph in which
either each vertex has in-degree equal to its out-degree, or else all vertices except two satisly this condition
and the remaining vertices have in-degree differing from out-degree by 1 (necessarily once in each direction}.
We begin by forming a path starting at the vertex whose out-degree exceeds its in-degree by 1 (in the second
case) or at any vertex (in the first case). We traverse the edges (never more than once each), forming a path,
until we cannot go on. Necessarily we end up either at the vertex whose in-degree exceeds its out-degree (in
the first case) or at the starting vertex (in the second case}. From then on we do exactly as in Algorithm 1,
finding a simple circuit among the edges not yet used, starting at any vertex on the path we already have;
such a vertex exists by the weak connectivity assumption. We splice this circuit into the path, and repeat the
process until all edges have been used.




26. For which values of n do these graphs have an Euler cir-
cuit?

ﬂ} Kn h‘) C,lr f] w:r d] QH

26. a) The degrees of the vertices (n — 1) are even if and only if n is odd. Therefore there is an Euler circuit if
and only if n is odd (and greater than 1, of course).
b) For all n > 3, clearly ), has an Euler circuit, namely itself.
c) Since the degrees of the vertices around the rim are all odd, no wheel has an Euler cirenit.
d) The degrees of the vertices are all n. Therefore there is an Euler circuit if and only if n 1s even (and

greater than 0, of course).

27. For which values of n do the graphs in Exercise 26 have
an Euler path but no Euler circuit?

27. a) Clearly K; has an Euler path but no Euler circuit. For odd n > 2 there is an Euler circuit (since the
degrees of all the vertices are n— 1, which is even), whereas for even n > 2 there are at least 4 vertices of odd
degree and hence no Euler path. Thus for no n other than 2 is there an Euler path but not an Euler circuit.
b) Since C, has an Euler circuit for all n, there are no values of n meeting these conditions.

c) A wheel has at least 3 vertices of degree 3 (around the rim), so there can be no Euler path.

d) The same argument applies here as applied in part (a). In more detail, @, (which is the same as K,) is
the only cube with an Euler path but no Euler circuit, since for odd n > 1 there are too many vertices of odd
degree, and for even n > 1 there is an Euler circuit.

28. For which values of m and n does the complete bipartite
graph K, , have an

a) Euler circuit?
b) Euler path?

28. a) Since the degrees of the vertices are all m and n. this graph has an Euler circuit if and only if both of the
positive integers m and n are even.
b) All the graphs listed in part (a) have an Euler circuit, which is also an Euler path. In addition, the graphs
Ks , for odd n (and K,, s for odd m) have exactly 2 vertices of odd degree, so they have an Euler path but
not an Euler circuit. Also, Ky ; obviously has an Euler path. All other complete bipartite graphs have too

many vertices of odd degree.




29, Find the least number of times it is necessary to lift a
pencil from the paper when drawing each of the graphs
in Exercises 1-7 without retracing any part of the graph.

29. Just as a graph with 2 vertices of odd degree can be drawn with one continuous motion, a graph with 2m
vertices of odd degree can be drawn with m continuous motions. The graph in Exercise 1 has 4 vertices of
odd degree, so it takes 2 continuous motions; in other words, the pencil must be lifted once. We could do

this, for example, by first tracing a,c,d,e,a,b and then tracing c,b,e. The graphs in Exercises 2-7 all have
Euler paths, so no lifting is necessary.

In Exercises 30-36 determine whether the given graph has a
Hamilton circuit. If it does, find such a circuit. If it does not,
give an argument to show why no such circuit exists.

30, a d

30. This graph can have no Hamilton circuit because of the cut edge {c. f}. Every simple circuit must be confined
to one of the two components obtained by deleting this edge.

31, a b 32, a b
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31. It is clear that a,b,c,d,e,a is a Hamilton circuit.

32. As in Exercise 30, the cut edge ({e, f} in this case) prevents a Hamilton circuit.
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33. There is no Hamilton circuit because of the cut edges ({e, e}, for instance). Once a purported circuit had
reached vertex e, there would be nowhere for it to go.
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34. This graph has no Hamilton eircuit. If it did, then certainly the circuit would have to contain edges {d.a}
and {a.b}. since these are the only edges incident to vertex a. By the same reasoning, the circnit wounld have
to contain the other six edges around the outside of the figure. These eight edges already complete a circuit,
and this circuit omits the nine vertices on the inside. Therefore there is no Hamilton circuit.

36, a b C
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35. There is no Hamiltonian circuit in this graph. If there were one, then it would have to include all the edges
of the graph, because it would have to enter and exit vertex a, enter and exit vertex d, and enter and exit
vertex e. But then vertex ¢ would have been visited more than once, a contradiction.

36. It is easy to find a Hamilton circuit here, such as a, d, g, h, i, f, ¢, e, b, and back to a.



37. Does the graph in Exercise 30 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

37. This graph has the Hamilton path a, b, ¢, f,d,e. This simple path hits each vertex once.

38. Does the graph in Exercise 31 have a Hamilton path? If
s0, find such a path. If it does not, give an argument to
show why no such path exists.

38. This graph has the Hamlton path a,b, ¢, d, e.

39. Does the graph in Exercise 32 have a Hamilton path? If
50, find such a path. If it does not, give an argument to
show why no such path exists.

39. This graph has the Hamilton path f,e,d,a,b,c.

40. Does the graph in Exercise 33 have a Hamilton path? If
s0, find such a path. If it does not, give an argument to
show why no such path exists.

40. This graph has no Hamilton path. There are three vertices of degree 1; each of them would have to be an end

vertex of every Hamilton path. Since a path has only 2 ends, this 1s impossible.




#41. Does the graph in Exercise 34 have a Hamilton path? If
s0, find such a path. If it does not, give an argument to
show why no such path exists.

41. There are eight vertices of degree 2 in this graph. Only two of them can be the end vertices of a Hamilton
path, so for each of the other six their two incident edges must be present in the path. Now if either all four
of the “outside” vertices of degree 2 {a, ¢, g, and e} or all four of the “inside” vertices of degree 2 (i, k.

[, and n) are not end vertices, then a circuit will be completed that does not include all the vertices—either
the outside square or the middle square. Therefore if there is to be a Hamilton path then exactly one of the
inside corner vertices must be an end vertex, and each of the other inside corner vertices must have its two
incident edges in the path. Without loss of generality we can assume that vertex ¢ is an end, and that the
path begins ¢,0,n.m,1, q, k, 7. At this point, either the path must visit vertex p, in which case it gets stuck,
or else it must visit b, in which case it will never be able to reach p. Either case gives a contradiction, so
there is no Hamilton path.

44. For which values of n do the graphs in Exercise 26 have
a Hamilton circuit?

44, a) Obviously K, has a Hamilton circuit for all n > 3 but not for n < 2.
b) Obviously ), has a Hamilton circuit for all n = 3.
c¢) A Hamilton cirenit for €, can easily be extended to one for W,, by replacing one edge along the rim of
the wheel by two edges, one going to the center and the other leading from the center. Therefore W), has a
Hamilton circuit for all n > 3.

d) This i1s Exercise 49; see the solution given for it.

45. For which values of m and n does the complete bipartite
graph K, , have a Hamilton circuit?

45. A Hamilton circuit in a bipartite graph must visit the vertices in the parts alternately, returning to the part
in which it began. Therefore a necessary condition is certainly m = n. Furthermore K, ; does not have a
Hamilton cirenit, so we need n > 2 as well. On the other hand, since the complete bipartite graph has all
the edges we need, these conditions are sufficient. Explicitly, if the vertices are aj,aq,.... a,, in one part and

by.ba, ... by in the other, with n > 2, then one Hamilton circuit is ay, by, a0, b, ..., an, b, a1




*46, Show that the Petersen graph, shown here, does not have
a Hamilton circuit, but that the subgraph obtained by
deleting a vertex v, and all edges incident with v, does
have a Hamilton circuit.

46. We do the easy part first, showing that the graph obtained by deleting a vertex from the Petersen graph has a
Hamilton circuit. By symmetry, it makes no difference which vertex we delete, so assume that it is vertex j.
Then a Hamilton circuit in what remains 18 a, e,d, i, g. b, ¢, h, f,a. Now we show that the entire graph has no
Hamilton circuit. Assume that a Hamilton eireuit exists. Not all the edges around the outside can be used, so
without loss of generality assume that {c,d} is not used. Then {e,d}, {d.i}, {h,c}. and {b, ¢} must all be
used. If {a, f} is not used, then {e,a}, {a,b}, {f,i}, and {f, h} must be used, forming a premature cirenit.
Therefore {a, f} is used. Without loss of generality we may assume that {e,a} is also used, and {a,b} is not
used. Then {b,g} is also used, and {e.j} is not. But this requires {g.j} and {h.j} to be used, forming a

premature eireuit b, e, b, j, g, b. Hence no Hamilton circuit can exist in this graph.




47. For each of these graphs, determine (i ) whether Dirac’s

47.

theorem can be used to show that the graph has a Hamilton
circuit, (if ) whether Ore’s theorem can be used to show
that the graph has a Hamilton circuit, and (iii ) whether
the graph has a Hamilton circuit.

a) b)

c) d)

For Dirac’s theorem to be applicable, we need every vertex to have degree at least n/2, where n is the number
of vertices in the graph. For Ore’s theorem, we need deg(x)+ deg(y) > n whenever z and y are not adjacent.
a) In this graph n = 5. Dirac’s theorem does not apply, since there is a vertex of degree 2, and 2 is smaller
than n/2. Ore's theorem also does not apply, since there are two nonadjacent vertices of degree 2, so the
sum of their degrees is less than n. However, the graph does have a Hamilton circuit—just go around the

pentagon. This illustrates that neither of the sufficient conditions for the existence of a Hamilton circuit given
in these theorems is necessary.

b) Everything said in the solution to part (a) is valid here as well.

c) In this graph n = 5, and all the vertex degrees are either 3 or 4, both of which are at least n/2. Therefore
Dirac's theorem guarantees the existence of a Hamilton circuit. Ore’s theorem must apply as well, since
(n/2)+ (n/2) = n: in this case, the sum of the degrees of any pair of nonadjacent vertices (there are only two
such pairs} is 6, which is greater than or equal to 5.

d) In this graph n = 6, and all the vertex degrees are 3, which is (at least) n/2. Therefore Dirac’s theorem
guarantees the existence of a Hamilton circuit. Ore’s theorem must apply as well, since (n/2) + (n/2) = n;in
this case, the sum of the degrees of any pair of nonadjacent vertices is 6.

Although not illustrated in any of the examples in this exercise, there are graphs for which Ore’s theorem
applies, even though Dirac’s does not. Here is one: Take K, and then tack on a path of length 2 between two
of the vertices, say a,b,e. In all, this graph has five vertices, two with degree 3, two with degree 4, and one
with degree 2. Since there is a vertex with degree less than 5/2, Dirac’s theorem does not apply. However,
the sum of the degrees of any two (nonadjacent) vertices is at least 2 + 3 = 5, so Ore’s theorem does apply
and guarantees that there is a Hamilton circuit.



SECTION 10.7 Planar Graphs

As with Euler and Hamilton circuits and paths, the topic of planar graphs is a classical one in graph theory.
The theory (Euler’s formula, Kuratowski's theorem, and their corallaries) is quite beautiful. It is easy fo ask
extremely difficult questions in this area, however—see Exercise 27, for example. In practice. there are very
efficient algorithms for determining planarity that have nothing to do with Kuratowski's theorem, but they
are quite complicated and beyond the scope of this book. For the exercises here, the best way to show that a
graph is planar is to draw a planar embedding; the best way to show that a graph is nonplanar is to find a
subgraph homeomorphic to Ky or K33. (Usually it will be Ks3.)

1. Can five houses be connected to two utilities without con-
nections crossing?

1. The question is whether K5 o is planar. It clearly is so, since we can draw it in the zy-plane by placing the
five vertices in one part along the x-axis and the other two vertices on the positive and negative y-axis.

In Exercises 2—4 draw the given planar graph without any
Crossings.

2. For convenience we label the vertices a, b, e, d, e, starting with the vertex in the lower left corner and proceeding

clockwise around the outside of the figure as drawn in the exercise. If we move vertex d down, then the crossings
can be avoided.

3. For convenience we label the vertices a, b, ¢,d, e, starting with the vertex in the lower left corner and proceeding

clockwise around the outside of the figure as drawn in the exercise. This graph is just Ky 3; the picture below
shows it redrawn by moving vertex ¢ down.



4. For convenience we label the vertices a, b, ¢, d, e, starting with the vertex in the lower left corner and proceeding
clockwise around the outside of the figure as drawn in the exercise. If we move vertex b far to the right, and
squeeze vertices d and e in a little, then we can avoid crossings.
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In Exercises 5-9 determine whether the given graph is planar.
If so, draw it so that no edges cross.

. a 6. a b c
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5. This is Kg 3, with parts {a,d, f} and {b,c,e}. Therefore it is not planar.
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6. This graph is easily untangled and drawn in the following planar representation.
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7. This graph can be untangled if we play with it long enough. The following picture gives a planar representation

LN

8. If one has access to software such as The Geometer’s Sketchpad, then this problem can be solved by drawing

the graph and moving the points around, trying to find a planar drawing. If we are unable to find one, then
we look for a reason why —either a subgraph homeomorphic to K3 or one homeomorphic to K35 (always try
the latter first). In this case we find that there is in fact an actual copy of K1, with vertices a, ¢, and e in

one set and b, d, and f in the other.

9. If one has access to software such as The Geometer’s Sketchpad, then this problem can be solved by drawing
the graph and moving the points around, trying to find a planar drawing. If we are unable to find one, then
we look for a reason why—either a subgraph homeomorphic to Ks or one homeomorphic to K33 (always try
the latter first). In this case we find that there is a homeomorphic copy of K33, with vertices b, g. and 4 in
one set and a, [, and h in the other; all the edges are there except for the edge bh, and it is represented by

the path beh.

10. Complete the z;rgumcnt in Example 3.

10, The argument 1s similar to the argument when vg 1s inside region Fs. In the case at hand the edges between

vy and vg and between vy and vs separate R; into two subregions. Ri; (bounded by vq, va, va. and vs)
and Ris (bounded by vy, vy, va, and v5). Now again there is no way to place vertex vg without forcing a
crossing. If vg is in R5. then there is no way to draw the edge {vs,vs} without crossing another edge. If vg
is in 11, then the edge between vy and vg cannot be drawn; whereas if vg is in Rqs, then the edge between

vy and vg cannot be drawn.



11. Show that K5 is nonplanar using an argument similar to
that given in Example 3.

11. We give a proof by contradiction. Suppose that there is a planar representation of K5, and let us call the
vertices vy, v2, ..., 5. There must be an edge from every vertex to every other. In particular, v;, vs,
vz, t4, vs, v; must form a pentagon. The pentagon separates the plane into two regions, an inside and an
outside. The edge from v; to vz must be present, and without loss of generality let us assume it is drawn on
the inside. Then there is no way for edges {ve,v4} and {vs, w5} to be in the inside, so they must be in the
outside region. Now this prevents edges {vi,vs} and {v3,vs5} from being on the outside. But they cannot
both be on the inside without crossing. Therefore there is no planar representation of K.

12. Suppose that a connected planar graph has eight vertices,
each of degree three. Into how many regions is the plane
divided by a planar representation of this graph?

12. Euler’s formula says that v —e + 1+ = 2. We are given v = 8, and from the fact that the sum of the degrees

equals twice the number of edges, we deduce that e = (3-8)/2 = 12. Therefore r =2 —v+e=2—-8+12 =6.

13. Suppose that a connected planar graph has six vertices,
each of degree four. Into how many regions is the plane
divided by a planar representation of this graph?

13. We apply Euler’s formula r = e — v + 2. Here we are told that v = 6. We are also told that each vertex has
degree 4, so that the sum of the degrees is 24. Therefore by the handshaking theorem there are 12 edges, so
e = 12. Solving, we find r = 8.

14. Suppose that a connected planar graph has 30 edges. If a
planar representation of this graph divides the plane into
20 regions, how many vertices does this graph have?

14. Euler’s formula says that v —e +r = 2. We are given ¢ = 30 and r = 20. Therefore v = 2 —r +e =
2-20+30=12.




15. Prove Corollary 3.

15. The proof is very similar to the proof of Corollary 1. First note that the degree of each region is at least 4.
The reason for this is that there are no loops or multiple edges (which would give regions of degree 1 or 2) and
no simple circuits of length 3 (which would give regions of degree 3); and the degree of the unbounded region
is at least 4 since we are assuming that v > 3. Therefore we have, arguing as in the proof of Corollary 1,
that 2e > 4r, or simply r < ¢/2. Plugging this into Euler’s formula, we obtain e — v+ 2 < ¢/2, which gives
e < 2v — 4 after some trivial algebra.

16. Suppose that a connected bipartite planar simple graph
has e edges and v vertices. Show thate = 2v — 4ify = 3.

16. A bipartite simple graph has no simple circuits of length three. Therefore the mequality follows from Corol-

lary 3.

#17. Suppose that a connected planar simple graph with ¢
edges and v vertices contains no simple circuits of length
4 or less. Show that ¢ = (5/3)v — (10/3) if v = 4.

17. The proof is exactly the same as in Exercise 15, except that this time the degree of each region must be at
least 5. Thus we get 2e¢ > 5r, which after the same algebra as before, gives the desired inequality.

18. Suppose that a planar graph has k connected components,
e edges, and v vertices. Also suppose that the plane is
divided into r regions by a planar representation of the
graph. Find a formula for r in terms of e, v, and £.

18, If we add £ —1 edges, we can make the graph connected, create no new regions, and still avoid edge crossings.
(We just add an edge from one vertex in one component, incident to the unbhounded region, to one vertex in
each of the other components.) For this new graph, Euler’s formula tells us that v — (e +k —1)4+r = 2. This

simplifies algebraically to r = e — v+ k+ 1.




19. Which of these nonplanar graphs have the property that
the removal of any vertex and all edges incident with that
vertex produces a planar graph?

a) Ks b) Kg c) Kia d) K14

19. a) If we remove a vertex from Kj, then we get K, which is clearly planar.
b) If we remove a vertex from Kg, then we get Ky, which is not planar.
c) If we remove a vertex from K3 3. then we get K32, which is clearly planar.
d) We assume the question means “Is it the case that for every v, the removal of v makes the graph planar?”’
Then the answer is no. since we can remove a vertex in the part of size 4 to leave K33, which is not planar.

In Exercises 20-22 determine whether the given graph is
homeomorphic to K1 1.

21. a b c

20. This graph is not homeomorphie to Ks 3, since by rerouting the edge between a and h we see that it is planar.

21. This graph is planar and hence cannot be homeomorphic to K.
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22, Replace each vertex of degree two and 1ts incident edges by a single edge. Then the result 13 K5 3: the parts

are {a,e,i} and {c,g,k}. Therefore this graph is homeomorphic to K5 3.



In Exercises 23-25 use Kuratowski’s theorem to determine
whether the given graph is planar.

23, a b c d

23. The instructions are really not fair. It is hopeless to try to use Kuratowski's theorem to prove that a graph is
planar, since we would have to check hundreds of cases to argue that there is no subgraph homeomorphic to
K5 or K33z. Thus we will show that this graph is planar simply by giving a planar representation. Note that
it is Q3.

a d

24. This graph is nonplanar. If we delete the five curved edges outside the big pentagon, then the graph is

homeomorphic to K. We can see this by replacing each vertex of degree 2 and its two edges by one edge.

25. This graph is nonplanar, since it contains K3 as a subgraph: the parts are {a,g,d} and {b,c,e}. (Actually
it contains K3 4. and it even contains a subgraph homeomorphic to Kj.)

26. Show that K3 3 has 1 as its crossing number.

26. If we follow the proof in Example 3, we see how to construet a planar representation of all of K33 except for
one edge. In particular, if we place vertex vg inside region Rpy of Figure 7(b), then we can draw edges from
vg to vz and vs with no crossings, and to v1 with only one crossing. Furthermore, since K33 is not planar,
its crossing number cannot be 0. Hence its crossing number is 1.



##27. Find the crossing numbers of each of these nonplanar

graphs.
a) Ks b) Ke c) K7
d) K34 e) Kgg f) Kss

27. This is an extremely hard problem. We will present parts of the solution; the reader should consult a good
graph theory book, such as Gary Chartrand, Linda Lesniak and Ping Zhang’s Graphs & Digraphs, fifth edition
{Chapman & Hall/CRC Press, 2011), for references and further details.

First we will state, without proof, what is known about crossing numbers for complete graphs (much is

still not known about crossing numbers). If n < 10, then the crossing number of K, is given by the following

Sl

Thus the answers for parts (a), (b), and (c) are 1, 3, and 9, respectively. The figure below shows Ky drawn
in the plane with three crossings, which at least proves that the crossing number of K is at most 3. The

proof that it is not less than 3 is not easy. The embedding of K5 with one crossing can be seen in this same

picture, by ignoring the vertex at the top.

Second, for the complete bipartite graphs, what is known is that if the smaller of m and n is at most 6,
then the crossing number of K, » is given by the following product

milm—1||n]|in—1

2 2 2 2 '
Thus the answers for parts (d), (e), and (f) are 2, 4, and 16, respectively. The figure below shows Ky 4
drawn in the plane with four crossings, which at least proves that the crossing number of K, is at most 4.

The proof that it is not less than 4 is, again, difficult. It is also easy to see from this picture that the crossing
number of K34 is at most 2 (by ignoring the top vertex).



*28. Find the crossing number of the Petersen graph.

28, First note that the Petersen graph with one edge removed 1s not planar; indeed, by Example 9, the Petersen
graph with three mutually adjacent edges removed is not planar. Therefore the crossing number must be
greater than 1. (If it were only 1, then removing the edge that crossed would give a planar drawing of the
Petersen graph minus one edge.) The following figure shows a drawing with only two crossings. (This drawing
was obtained by a little trial and error.) Therefore the crossing number must be 2. (In this figure, the vertices

are labeled as in Figure 14(a).)




SECTION 10.8 Graph Coloring

Like the problem of finding Hamilton paths, the problem of finding colorings with the fewest possible colors
probably has no good algorithm for its solution. In working these exercises, for the most part you should
proceed by trial and error, using whatever insight you can gain by staring at the graph (for instance, finding
large complete subgraphs). There are also some interesting exercises here on coloring the edges of graphs—see
Exercises 21-26. Exercises 29-31 are worth looking at, as well: they deal with a fast algorithm for coloring a
graph that is not guaranteed to produce an optimal coloring.

(=]

In Exercises -4 construct the dual graph for the map shown. —

Then find the number of colors needed to color the map so o

that no two adjacent regions have the same color. \
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1. We construct the dual graph by putting a vertex inside each region (but not in the unbounded region), and
drawing an edge between two vertices if the regions share a common border. The easiest way to do this is
illustrated in our answer. First we draw the map, then we put a vertex inside each region and make the
connections. The dual graph, then, is the graph with heavy lines.

The number of colors needed to color this map is the same as the number of colors needed to color the dual
graph. Since A, B, C, and D are mutually adjacent, at least four colors are needed. We can color each of
the vertices (i.e., regions) A, B, C', and D a different color, and we can give E the same color as we give C'.

&

As i Exercise 1, the number of colors needed to color this map is the same as the number of colors needed

2. We construct the dual as in Exercise 1.

to color the dual graph. Clearly two colors are necessary and sufficient: one for vertices (regions) A and ',

and the other for B and D.




As in Exercise 1, the number of colors needed to color this map is the same as the number of colors needed
to color the dual graph. Three colors are clearly necessary, because of the triangle ABC, for instance.
Furthermore three colors suffice, since we can color vertex (region) A red, vertices B, D, and ¥ blue, and
vertices C' and E green.

4. We construct the dual as in Exercise 1. A

=N

As in Exercise 1, the number of colors needed to color this map is the same as the number of colors needed to
color the dual graph. Clearly two colors are necessary and sufficient: one for vertices (regions) A, €', and D,
and the other for B, F, and F.

In Exercises 53—11 find the chromatic number of the given
graph.
5 a b b C
a d
C d f e

5. For Exercises 5-11, in order to prove that the chromatic number is &k, we need to find a k-coloring and to
show that (at least) k colors are needed. Here, since there is a triangle, at least 3 colors are needed. Clearly
3 colors suffice, since we can color a and d the same color.

6. Since there is a triangle, at least 3 colors are needed. To show that 3 colors suffice, notice that we can color
the vertices around the outside alternately using red and blue, and color vertex g green.
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7. Since there is a triangle, at least 3 colors are needed. Clearly 3 colors suffice, since we can color a and ¢ the
same color.

8. Since there is a triangle, at least 3 colors are needed. The coloring in which b and ¢ are blue, a and f are
red, and d and e are green shows that 3 colors suffice.

10.

—
~E

9. Since there is an edge, at least 2 colors are needed. The coloring in which b, d, and e are red and @ and ¢
blue shows that 2 colors suffice.

10. Since vertices b, ¢, h, and i form a K. at least 4 colors are required. A coloring using only 4 colors (and
we can get this by trial and error. without much diffienlty) is to let @ and ¢ be red; b, d. and f, blue; g
and i, green; and e and h, yellow.

11. e h i n o

11. Since there is a triangle, at least 3 colors are needed. It is not hard to construct a 3-coloring. We can let a,
f, h, 7, and n be blue; let b, d, g, k, and m be green; and let ¢, e, 2, [, and o be yellow.



12. For the graphs in Exercises 5-11, decide whether it is

12,

possible to decrease the chromatic number by removing
a single vertex and all edges incident with it.

In Exercise 5 the chromatic number 15 3, but if we remove vertex a. then the chromatic number will fall to 2.
In Exercise 6 the chromatic number 1s 3, but if we remove vertex g, then the chromatic number will fall to 2.
In Exercise 7 the chromatic number 1s 3, but if we remove vertex b, then the chromatic number will fall to 2.
In Exercise 8 the chromatic number was shown to be 3. Even 1f we remove a vertex, at least one of the two
triangles ace and bdf must remain, since they share no vertices. Therefore the smaller graph will still have
chromatic number 3. In Exercise 9 the chromatic number 1s 2. Obviously 1t is not possible to reduce it to 1
by removing one vertex, since at least one edge will remain. In Exercise 10 the chromatic number was shown
to be 4, and a coloring was provided. If we remove vertex h and recolor vertex e red, then we can eliminate
color yellow from that solution. Therefore we will have reduced the chromatic number to 3. Finally, the graph
in Exercise 11 will still have a triangle, no matter what vertex is removed, so we cannot lower its chromatic

number below 3 by removing a vertex.

[ -

13. Which graphs have a chromatic number of 17

13.

If a graph has an edge (not a loop, since we are assuming that the graphs in this section are simple), then
its chromatic number is at least 2. Conversely, if there are no edges, then the coloring in which every vertex
receives the same color is proper. Therefore a graph has chromatic number 1 if and only if it has no edges.

14.

What is the least number of colors needed to color a map
of the United States? Do not consider adjacent states
that meet only at a corner. Suppose that Michigan is
one region. Consider the vertices representing Alaska and
Hawaii as isolated vertices.

14. Since the map is planar, we know that four colors suffice. That four colors are necessary can be seen by looking

at Kentucky. It is surrounded by Tennessee, Missouri, Illinois, Indiana, Ohio, West Virginia, and Virginia;
furthermore the states in this list form a Cy, each one adjacent to the next. Therefore at least three colors

are needed to color these seven states (see Exercise 16), and then a fourth is necessary for Kentucky.

15. What is the chromatic number of W, ?

15. In Example 4 we saw that the chromatic number of C,, is 2 if n is even and 3 if n is odd. Since the wheel

W, is just C), with one more vertex, adjacent to all the vertices of the C, along the rim of the wheel, W,
clearly needs exactly one more color than C,, (for that middle vertex). Therefore the chromatic number of
W, is 3 if n is even and 4 if n is odd.




17. Schedule the final exams for Math 115, Math 116,
Math 185, Math 195, CS 101, CS 102, CS 273, and
CS 473, using the fewest number of different time slots,
if there are no students taking both Math 115 and CS 473,
both Math 116 and CS 473, both Math 195 and CS 101,
both Math 195 and CS 102, both Math 115 and Math 116,
both Math 115 and Math 185, and both Math 185 and
Math 195, but there are students in every other pair of
COUrSEs.

17. Consider the graph representing this problem. The vertices are the 8 courses, and two courses are joined by
an edge if there are students taking both of them. Thus there are edges between every pair of vertices except
the 7 pairs listed. It is much easier to draw the complement than to draw this graph itself; it is shown below.

115 116

473 185

273°
195

101

We want to find the chromatic number of the graph whose complement we have drawn; the colors will be the
time periods for the exams. First note that since Math 185 and the four CS courses form a K5 (in other
words, there are no edges between any two of these in our picture), the chromatic number is at least 5. To
show that it equals 5, we just need to color the other three vertices. A little trial and error shows that we
can make Math 195 the same color as (i.e., have its final exam at the same time as) CS 101; and we can make
Math 115 and 116 the same color as CS 473. Therefore five time slots (colors) are sufficient.




18. How many different channels are needed for six stations
located at the distances shown in the table, if two sta-
tions cannot use the same channel when they are within
150 miles of each other?

1 2 3 4 5 6
| — | 8 | 175 | 200 | 50 | 100
2| 8 | — | 125 | 175 | 100 | 160
J| 175 | 125 | — | 100 | 200 | 250
4 | 200 | 175 | 100 | — | 210 | 220
5| 50 | 100 | 200 | 210 | — | 100
6 | 100 | 160 | 250 | 220 | 100 | —

18. We draw the graph in which two vertices (representing locations) are adjacent if the locations are within 150

miles of each other.

4 3 z 1 B

Clearly three colors are necessary and sufficient to color this graph, say red for vertices 4, 2, and 6; blue for

3 and 5; and yellow for 1. Thus three channels are necessary and sufficient.




21. Find the edge chromatic number of each of the graphs in

Exercises 5—-11.

21. Note that the number of colors needed to color the edges is at least as large as the largest degree of a vertex,

since the edges at each vertex must all be colored differently. Hence if we can find an edge coloring with that
many colors, then we know we have found the answer. In Exercise 5 there is a vertex of degree 3, so the edge
chromatic number is at least 3. On the other hand, we can color {a,c} and {b,d} the same color, so 3 colors
suffice. In Exercise 6 the 6 edges incident to g must all get different colors. On the other hand, it is not
hard to complete a proper edge coloring with only these colors (for example, color edge {a, f} with the same
color as used on {d, g}), so the answer is 6. In Exercise T the answer must be at least 3; it is 3 since edges
that appear as parallel line segments in the picture can have the same color. In Exercise 8 clearly 4 colors
are required, since the vertices have degree 4. In fact 4 colors are sufficient. Here is one proper 4-coloring
(we denote edges in the obvious shorthand notation): color 1 for ae, be, and df ; color 2 for ae, bd, and ef;
color 3 for ab, cd, and ef; and color 4 for ad, bf, and ce. In Exercise 9 the answer must be at least 3;
it is easy to construct a 3-coloring of the edges by inspection: {a.b} and {c,e} have the same color, {a,d}
and {b, ¢} have the same color, and {a,e} and {c, d} have the same color. In Exercise 10 the largest degree
is § {vertex i has degree 6); therefore at least 6 colors are required. By trial and error we come up with this
coloring using 6 colors (we use the obvious shorthand notation for edges); there are many others, of course.
Assign color 1 to ag. cd, and hi; color 2 to ab, ¢f, dg. and ei; color 3 to bh, cg, di, and ef; color 4 to
ah, ¢i, and de; color 5 to bi, ch, and fg; and color 6 to ai, be, and gh. Finally, in Exercise 11 it is easy
to construct an edge-coloring with 4 colors; again the edge chromatic number is the maximum degree of a
vertex.

Despite the appearances of these examples, it is not the case that the edge chromatic number of a graph
is always equal to the maximum degree of the vertices in the graph. The simplest example in which this is not

true is K3. Clearly its edge chromatic number is 3 (since all three edges are adjacent to each other), but its
maximum degree is 2. There is a theorem, however, stating that the edge chromatic number is always equal
to either the maximum degree or one more than the maximum degree.

23. Find the edge chromatic numbers of
a) Cp, wheren = 3.
h) W,, where n = 3.

23. a) The n-cycle’s edges are just like the n-cycle's vertices (each adjacent to the next as we go around the
cycle), so the edge chromatic number is the same, namely 2 if n is even and 3 if n is odd, as in Example 4.
b) The edge chromatic number is at least n, because the radial edges are all pairwise adjacent and therefore
must all have distinet colors. Suppose we call these colors 1 through n proceeding clockwise. We need no
additional colors for the edges of the cycle, because we can color the edge adjacent to the spokes colored 1
and 2 with color 3 and proceed clockwise with colors 4, 5, ..., n—1, n, 1, and 2. Therefore ¥'(W,) = n.




#26. Find the edge chromatic number of K,, when n is a posi-
tive integer.

26. This is really a problem about scheduling a round-robin tournament. Let the vertices of K, be v, va,..., vp.
These are the players in the tournament. We join two vertices with an edge of color 7 if those two players
meet in round ¢ of the tournament. First suppose that n is even. Place v, in the center of a circle, with the
remaining vertices evenly spaced on the cirele, as shown here for n = 8. The first round of the tournament

uses edges vpv1, Valn_1, VaVn_2. ..., Vp2Vns2)+1: these edges, shown in the diagram, get color 1.

-

V7 v2

v

vE v3

v5 vd

28. What can be said about the chromatic number of a graph
that has K, as a subgraph?

28. Since each of the n vertices in this subgraph must have a different color, the chromatic number must be at
least n.




36. Find these values:

a) x2(K3) b) x2(K4) c) x2(Wy)
d) x2(Cs) el x2(K34) f) x3(Ks)
*g) x3(Cs) h) x3(Kas5)

36. First let us prove some general results. In a complete graph, each vertex is adjacent to every other vertex, so
each vertex must get its own set of k different colors. Therefore if there are n vertices, kn colors are clearly
necessary and sufficient. Thus v (K, ) = kn. In a bipartite graph, every vertex in one part can get the same
set of k colors, and every vertex in the other part can get the same set of k colors (a disjoint set from the
colors assigned to the vertices in the first part). Therefore 2k colors are sufficient, and clearly 2k colors are
required if there is at least one edge. Let us now lock at the specific graphs.

a) For this complete graph situation we have k =2 and n = 3, so 2-3 = 6 colors are necessary and sufficient.
b) As in part (a), the answer is kn, which here is 2 -4 = 8.

c) Call the vertex in the middle of the wheel m, and call the vertices around the rim, in order, a, b, ¢, and d.
Since m, a, and b form a triangle, we need at least 6 colors. Assign colors 1 and 2 to m, 3 and 4 to a, and
5 and 6 to b. Then we can also assign 3 and 4 to ¢, and 5 and 6 to d, completing a 2-tuple coloring with 6
colors. Therefore yo(W,) = 6.

d) First we show that 4 colors are not sufficient. If we had only colors 1 through 4, then as we went around
the cycle we would have to assign, say, 1 and 2 to the first vertex, 3 and 4 to the second, 1 and 2 to the third,
and 3 and 4 to the fourth. This gives us no colors for the final vertex. To see that 5 colors are sufficient, we
simply give the coloring: In order around the cycle the colors are {1,2}. {3,4}, {1.5}, {2,4}, and {3,5}.
Therefore y2(C5) = 5.

e) By our general result on bipartite graphs, the answer is 2k = 2-2 = 4.

f) By our general result on complete graphs, the answer is kn =3 -5 = 15.

g) We claim that the answer is 8. To see that eight colors suffice, we can color the vertices as follows in
order around the eycle: {1,2,3}, {4.5,6}, {1.2.7}, {3,6,8}, and {4.5,7}. Showing that seven colors are not
sufficient 1s harder. Assume that a coloring with seven colors exists. Without loss of generality, color the first
vertex {1,2,3} and color the second vertex {4.5,6}. If the third vertex is colored {1,2,3}, then the fourth
and fifth vertices would need to use six colors different from 1, 2, and 3, for a total of nine colors. Therefore




#37. Let G and H be the graphs displayed in Figure 3. Find

a) x(G). b) x2(H).
¢) x3(G). d) x3(H).

37. a) Note that vertices d, ¢, and f are mutually adjacent. Therefore six different colors are needed in a 2-tuple

coloring, since each of these three vertices needs a disjoint set of two colors. In fact it is easy to give a coloring
with just six colors: Color a, d, and g with {1,2}; color ¢ and e with {3,4}; and color b and f with {5,6}.
Thus x2(G) = 6.

b) This one is trickier than part (a). There is no coloring with just six colors, since if there were, we would
be forced (without loss of generality) to color d with {1,2}; e with {3,4}; f with {5,6}; then g with {1,2},
b with {5.6}, and ¢ with {3,4}. This gives no free colors for vertex a. Now this may make it appear that
eight colors are required, but a little trial and error shows us that seven suffice: Color a with {2,4}; color
b and [ with {5,6}; color d with {1,2}; color ¢ with {3,7}; color ¢ with {3,4}; and color g with {1,7}.
Thus x2(H)=17.

¢) This is similar to part (a). Here nine colors are necessary and sufficient, since a, d, and g can get one
set of three colors: b and f can get a second set; and ¢ and e can get a third set. Clearly nine colors are
necessary to color the triangles.

d} First we construct a coloring with 11 colors: Color ¢ with {3,6,11}; color b and f with {7, 8,9}; color
d with {1,2.3}: color ¢ with {4,5,10}; color e with {4,6,11}; and color g with {1,2,5}. To prove that
x3(H) = 11, we must show that it is impossible to give a 3-tuple coloring with only ten colors. If such a
coloring were possible, without loss of generality we could color d with {1,2,3}, e with {4,5,6}, f with
{7.8.9}, and g with {1,2,10}. Now nine colors are needed for the three vertices a, b, and ¢, since they form
a triangle; but colors 1 and 2 are already used in vertices adjacent to all three of them. Therefore at least
9+ 2 =11 colors are necessary.




