SECTION 11.1 Introduction to Trees

These exercises give the reader experience working with tree terminology, and in particular with the relation-
ships between the height and the numbers of vertices, leaves, and internal vertices of a tree. Exercise 13 should
be done to get a feeling for the structure of trees. One good way to organize your enumeration of trees (such
as all nonisomorphic trees with five vertices) is to focus on a particular parameter, such as the length of a
longest path in the tree. This makes it easier to include all the trees and not count any of them twice. Review
the theorems in this section before working the exercises involving the relationships between the height and
the numbers of vertices, leaves, and Internal vertices of a tree. For a challenge that gives a good feeling for
the flavor of arguments in graph theory, the reader should try Exercise 43. In many ways trees are recursive
creatures, and Exercises 45 and 46 are worth looking at in this regard.
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1. Which of these graphs are trees?

a) hy *
c) d *
e) f)

1. a) This graph is connected and has no simple circuits, so it is a tree.
b) This graph is not connected, so it is not a tree.
¢) This graph is connected and has no simple circuits, so it is a tree.
d) This graph has a simple circuit, so it is not a tree.
e) This graph is connected and has no simple circuits, so it is a tree,
f) This graph has a simple circuit, so it is not a tree.




2. Which of these graphs are trees?

a) b)

c) d)

e}

2. a) This is a tree since it 1s connected and has no simple circuits.

b) This 15 a tree since 1t 1s connected and has no simple circuits.
¢) This is not a tree, since it is not connected.

d) This is a tree since it 1s connected and has no simple circuits.
e) This is not a tree, since it has a simple ecircuit.

f) This is a tree since it is connected and has no simple circuits.




3. Answer these questions about the rooted tree illustrated.
a

a) Which vertex is the root?

b} Which vertices are internal?

¢) Which vertices are leaves?

d) Which vertices are children of j?7

e) Which vertex is the parent of /7

f) Which vertices are siblings of o7

g) Which vertices are ancestors of m?
h} Which vertices are descendants of b7

3. a) Vertex a is the root, since it is drawn at the top.
b) The internal vertices are the vertices with children, namely a, b, ¢, d, f, h. 7, q, and ¢.
¢) The leaves are the vertices without children, namely e, g, ¢, k., I, m, n, o, p, r, s, and u.
d) The children of j are the vertices adjacent to j and below j, namely ¢ and r.
e) The parent of h is the vertex adjacent to & and above h, namely c.
f) Vertex o has only one sibling, namely p, which is the other child of o¢'s parent. h.
g) The ancestors of m are all the vertices on the unique simple path from m back to the root, namely [, b,
and a.

h) The descendants of b are all the vertices that have b as an ancestor, namely e, f, I, m, and n.

4. Answer the same questions as listed in Exercise 3 for the
rooted tree illustrated.

4. a) Vertex a is the root, since it is drawn at the top.
b) The internal vertices are the vertices with children, namely a, b, d, €, g, h, i, and o.
¢) The leaves are the vertices without children, namely ¢, f, 5, k, [, m, n, p, q, v, and s.
d) The children of j are the vertices adjacent to j and below j. There are no such vertices, so there are no
children.
e) The parent of h is the vertex adjacent to h and above h, namely d.
f) Vertex o has only one sibling, namely p, which is the other child of o's parent, i.
g) The ancestors of m are all the vertices on the unique simple path from m back to the root, namely g, b,
and a.

h) The descendants of b are all the vertices that have b as an ancestor, namely e, [, g, j, k, [, and m.




5. Is the rooted tree in Exercise 3 a full m-ary tree for some
positive integer m?

5. This is not a full m-ary tree for any m. It is an me-ary tree for all m > 3. since each vertex has at most 3
children, but since some vertices have 3 children, while others have 1 or 2, it is not full for any m.

6. Is the rooted tree in Exercise 4 a full m-ary tree for some
positive integer m?

6. This is not a full m-ary tree for any m. It is an m-ary tree for all m > 3, since each vertex has at most 3

children, but since some vertices have 3 children, while others have 1 or 2, it is not full for any m.

7. What is the level of each vertex of the rooted tree in Ex-
ercise 37

7. We can easily determine the levels from the drawing. The root a is at level 0. The vertices in the row below
a are at level 1, namely b, ¢, and d. The vertices below that, namely ¢ through k (in alphabetical order),
are at level 2. Similarly ! through r are at level 3, s and ¢ are at level 4, and u is at level 5.

8. What is the level of each vertex of the rooted tree in Ex-
ercise 47
8. We can easily determine the levels from the drawing. The root a is at level 0. The vertices in the row below
a are at level 1, namely b, ¢, and d. The vertices below that, namely e through ¢ (in alphabetical order),

are at level 2. Similarly j through p are at level 3, and ¢, r, and s are at level 4.

9, Draw the subtree of the tree in Exercise 3 that is rooted
at
a) da. b) c. c) e.

9. We describe the answers, rather than actually drawing pictures.
a) The subtree rooted at a is the entire tree, since a is the root.
b) The subtree rooted at ¢ consists of five vertices—the root ¢, children g and h of this root, and grandchildren
o and p—and the four edges eg, ch, ho, and hp.
c) The subtree rooted at e is just the vertex e.



10. Draw the subtree of the tree in Exercise 4 that is rooted
at

a) da. b) c. c) e.

10. We describe the answers, rather than actually drawing pictures.
a) The subtree rooted at a is the entire tree, since a is the root.
b) The subtree rooted at ¢ consists of just the vertex c.

¢) The subtree rooted at e consists of e, j, and k. and the edges ej and ek.

o - wea -y

11. a) How many nonisomorphic unrooted trees are there
with three vertices?
b) How many nonisomorphic rooted trees are there

with three vertices (using isomorphism for directed
graphs)?

11. We find the answer by carefully enumerating these trees, i.e., drawing a full set of nonisomorphic trees. One
way to organize this work so as to avoid leaving any trees out or counting the same tree (up to isomorphism)
more than once is to list the trees by the length of their longest simple path {or longest simple path from the
root in the case of rooted trees).

a) There is only one tree with three vertices, namely K3 (which can also be thought of as the simple path
of length 2).

b) With three vertices, the longest path from the root can have length 1 or 2. There is only one tree of each
type, so there are exactly two nonisomorphic rooted trees with 3 vertices, as shown below.

N




*12, a) How many nonisomorphic unrooted trees are there

12. We find the answer by carefully enumerating these trees, i.e., drawing a full set of nonisomorphic trees. One

b) The longest path from the root can have length 1, 2 or 3. There is only one tree with longest path of

length 1 (the other three vertices are at level 1), and only one with longest path of length 3. If the longest

with four vertices?

b) How many nonisomorphic rooted trees are there
with four vertices (using isomorphism for directed
graphs)?

way to organize this work so as to avoid leaving any trees out or counting the same tree (up to isomorphism)

more than once 1s to list the trees by the length of their longest simple path (or longest simple path from the

root in the case of rooted trees).

a) There are two trees with four vertices, namely K 5 and the simple path of length 3. See the first two

trees below.

path has length 2, then the fourth vertex (after using three vertices to draw this path) can he “attached”

to either the root or the vertex at level 1, giving us two nonisomorphic trees. Thus there are a total of four

nonisomorphic rooted trees on 4 vertices, as shown helow.,

ok SN

*13. a) How many nonisomorphic unrooted trees are there

13

.

with five vertices?

b) How many nonisomorphic rooted trees are there with
five vertices (using isomorphism for directed graphs)?

We find the answer by carefully enumerating these trees, i.e., drawing a full set of nonisomorphic trees. One
way to organize this work so as to avoid leaving any trees out or counting the same tree (up to isomorphism)
more than once is to list the trees by the length of their longest simple path (or longest simple path from the
root in the case of rooted trees).

a) If the longest simple path has length 4, then the entire tree is just this path. If the longest simple path
has length 3, then the fifth vertex must be attached to one of the middle vertices of this path. If the longest
simple path has length 2, then the tree is just K 4. Thus there are only three trees with five vertices. They
can be pictured as the first, second, and fourth pictures in the top row below.

b) For rooted trees of length 5, the longest path from the root can have length 1, 2, 3 or 4. There is only
one tree with longest path of length 1 (the other four vertices are at level 1), and only one with longest path
of length 4. If the longest path has length 3, then the fifth vertex (after using four vertices to draw this
path) can be “attached” to either the root or the vertex at level 1 or the vertex at level 2, giving us three
nonisomorphic trees. If the longest path has length 2, then there are several possibilities for where the fourth
and fifth vertices can be “attached.” They can both be adjacent to the root; they can both be adjacent to
the vertex at level 1; one can be adjacent to the root and the other to the vertex at level 1; or one can be
adjacent to the root and the other to this vertex: in all there are four possibilities in this case. Thus there are
a total of nine nonisomorphic rooted trees on 5 vertices, as shown below,
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*14. Show that a simple graph is a tree if and only if it is
connected but the deletion of any of its edges produces a
graph that is not connected.

14. There are two things to prove. First suppose that T is a tree. By definition it is connected, so we need to
show that the deletion of any of its edges produces a graph that is not connected. Let {x,y} be an edge of T,
and note that = # y. Now T with {x,y} deleted has no path from z to y. since there was only one simple
path from x to y in T', and the edge itself was it. (We use Theorem 1 here, as well as the fact that if there
1s a path from a vertex u to another vertex v, then there is a simple path from » to v by Theorem 1 in

Section 10.4.) Therefore the graph with {x,y} deleted is not connected.

Conversely, suppose that a simple connected graph T' satisfies the condition that the removal of any edge
will disconnect it. We must show that T is a tree. If not, then T' has a simple cirenit, say xq, 0, ..., 2, T1.
If we delete edge {x,, 71} from T, then the graph will remain connected, since wherever the deleted edge
was used in forming paths between vertices we can instead use the rest of the circuit: =y, xs,..., 7, or its
reverse, depending on which direction we need to go. This is a contradiction to the condition. Therefore our

assumption was wrong, and T is a tree.

16. Which complete bipartite graphs K, ,,. where m and n
are positive integers, are trees?

16. If both m and n are at least 2, then clearly there is a simple circuit of length 4 in Ky, . On the other hand,

K1 18 clearly a tree (as is K1, ). Thus we conclude that Ky, , is a tree if and only if m =1 or n= 1.

17. How many edges does a tree with 10,000 vertices have?

17. Since a tree with n vertices has n — 1 edges, the answer is 9999,

18. How many vertices does a full 5-ary tree with 100 internal
vertices have?

18. By Theorem 4(ii), the answer is mi + 1 = 5- 100 + 1 = 501.




19. How many edges does a full binary tree with 1000 internal
vertices have?

19. Each internal vertex has exactly 2 edges leading from it to its children. Therefore we can count the edges by
multiplying the number of internal vertices by 2. Thus there are 2 - 1000 = 2000 edges.

20. How many leaves does a full 3-ary tree with 100 vertices
have?

20. By Theorem 4(i), the answer is [(m — 1)n+ 1]/m = (2-100+1)/3 = 67.

21. Suppose 1000 people enter a chess tournament. Use a
rooted tree model of the tournament to determine how
many games must be played to determine a champion, if
a player is eliminated after one loss and games are played
until only one entrant has not lost. (Assume there are no
ties.)

21. We can model the tournament as a full binary tree. Each internal vertex represents the winner of the game
played by its two children. There are 1000 leaves, one for each contestant. The root is the winner of the entire
tournament. By Theorem 4(iit), with m = 2 and [ = 1000, we see that i = (I — 1)/(m — 1) = 999. Thus
exactly 999 games must be played to determine the champion.

22, A chain letter starts when a person sends a letter to five
others. Each person who receives the letter either sends it
to five other people who have never received it or does not
send it to anyone. Suppose that 10,000 people send out
the letter before the chain ends and that no one receives
more than one letter. How many people receive the letter,
and how many do not send it out?

22, The model here is a full 5-ary tree. We are told that there are 10,000 internal vertices (these represent
the people who send out the letter). By Theorem 4(4i) we see that n = mi + 1 = 510000 + 1 = 50,001.
Everyone but the root receives the letter, so we conclude that 50,000 people receive the letter. There are
50001 — 10000 = 40,001 leaves in the tree, so that is the mumber of people who receive the letter but do not
send it out.




23. A chain letter starts with a person sending a letter out
to 10 others. Each person is asked to send the letter out
to 10 others, and each letter contains a list of the previous
six people in the chain. Unless there are fewer than six
names in the list, each person sends one dollar to the first
person in this list, removes the name of this person from
the list, moves up each of the other five names one posi-
tion, and inserts his or her name at the end of this list. If
no person breaks the chain and no one receives more than

one letter, how much money will a person in the chain
ultimately receive?

23. Let P be a person sending out the letter. Then 10 people receive a letter with P's name at the bottom of the
list (in the sixth position). Later 100 people receive a letter with P’s name in the fifth position. Similarly,
1000 people receive a letter with P’s name in the fourth position, and so on, until 1,000,000 people receive

the letter with P’s name in the first position. Therefore P should receive $1,000,000. The model here is a
full 10-ary tree.

#24. Either draw a full m-ary tree with 76 leaves and height 3,
where m is a positive integer, or show that no such tree
exists.

24. Such a tree does exist. By Theorem 4(4ii), we note that such a tree must have ¢ = 75/(m —1) internal vertices.
This has to be a whole number, so m — 1 must divide 75. This is possible, for example, if m = 6, so let us try
it. A complete 6-ary tree (see preamble to Exercise 27) of height 2 would have 36 leaves. We therefore need
to add 40 leaves. This can be accomplished by changing 8 vertices at level 2 to internal vertices; each such
change adds 5 leaves to the tree (6 new leaves at level 3. less the one leaf at level 5 that has been changed
to an mternal vertex). We will not show a picture of this tree, but just summarize its appearance. The root
has 6 children, each of which has 6 children, giving 36 vertices at level 2. Of these, 28 are leaves, and each
of the remaiming 8 vertices at level 2 has 6 children, living at level 3, for a total of 48 leaves at level 3. The
total mumber of leaves is therefore 28 + 48 = 76, as desired.




#25. Either draw a full m-ary tree with 84 leaves and height 3,
where m is a positive integer, or show that no such tree
exists.

25. No such tree exists. Suppose it did. By Theorem 4(2ii), we know that a tree with these parameters must have
i = 83/(m — 1) internal vertices. In order for this to be a whole number, m — 1 must be a divisor of 83. Since
83 is prime, this means that m = 2 or mm = 84. If m = 2, then we can have at most 15 vertices in all (the
root, two at level 1, four at level 2, and eight at level 3). So m cannot be 2. If m = 84, then ¢ = 1, which
tells us that the root is the only internal vertex, and hence the height is only 1, rather than the desired 3.
These contradictions tell us that no tree with 84 leaves and height 3 exists.

#26. A full m-ary tree T has 81 leaves and height 4.
a) Give the upper and lower bounds for m.

b) What is m if T is also balanced?

26. By Theorem 4(iif), we note that such a tree must have i = 80/(m — 1) internal vertices. This has to be a
whole number, so m — 1 must divide 80. By enumerating the divisors of 80, we see that m can equal 2, 3,

5,6,9, 11, 17, 21, 41, or 81. Some of these are incompatible with the height requirements, however.

a) Since the height is 4, we cannot have m = 2, since that will give us at most 1+2+4+8+ 16 = 31 vertices.
Any of the larger values of m shown above, up to 21. allows us to form a tree with 81 leaves and height 4.
In each case we could get m* leaves if we made all vertices at levels smaller than 4 internal; and we can get
as few as 4(m — 1) + 1 leaves by putting only one internal vertex at each such level. We can get 81 leaves in
the former case by taking m = 3; on the other hand, if m > 21, then we would be forced to have more than
81 leaves. Therefore the bounds on m are 3 < m < 21 (with m also restricted to being in the list above).

b) If T" must be balanced, then the smallest possible number of leaves is obtained when level 3 has only one
internal vertex and m® — 1 leaves, giving a total of m® — 1 +m leaves in T'. Again, the maximum number of
leaves will be m*. With these restriction, we see that m = 5 is already too big, since this would require at

least 5° — 145 = 129 leaves. Therefore the only possibility is m = 3.




A complete m-ary tree is a full m-ary tree in which every leaf
is at the same level.

27. Construct a complete binary tree of height 4 and a com-
plete 3-ary tree of height 3.

27. The complete binary tree of height 4 has 5 rows of vertices (levels 0 through 4), with each vertex not in
the bottom row having two children. The complete 3-ary tree of height 3 has 4 rows of vertices (levels 0
through 3), with each vertex not in the bottom row having three children.

28. How many vertices and how many leaves does acomplete
m-ary tree of height /1 have?

28. This tree has 1 vertex at level 0, m vertices at level 1. m? vertices at level 2. ... m! vertices at level k.
Therefore it has
2 P
l+m+m~+---+m = ———
m— 1

vertices in all. The vertices at level h are the only leaves, so it has m" leaves.




29, Prove
a) part (i) of Theorem 4.
b) part (i) of Theorem 4.

29. For both parts we use algebra on the equations n = ¢ +1 (which is true by definition) and n = mi+ 1 (which
is proved in Theorem 3).
a) That n = mt + 1 is one of the given equations. For the second equality here, we have | = n —i =
(mi+1)—i=(m-1)i+1.
b) If we subtract the two given equations, then we obtain 0 = (1—-m)i+(l—1),or (m—1)i =1-1. It follows
that i = (I—1)/(m—1). Then n =i+l =[(I—1)/(m—1D)}+1=(—1+lm—D/(m—1) = (lm—1)/(m—1).

L5730, Show that a full m-ary balanced tree of height & has more
than m"~! leaves.

30. (We assume m > 2.) First we delete all the vertices at level h; there is at least one such vertex, and they are
all leaves. The result must be a complete m-ary tree of height h — 1. By the result of Exercise 28, this tree
has m"~1 leaves. In the original tree, then, there are more than this many leaves, since every internal vertex

at level i — 1 (which counts as a leaf in our reduced tree) spawns at least two leaves at level h.

31. How many edges are there in a forest of 1 trees containing
a total of n vertices?

31. In each of the ¢ trees, there is one fewer edge than there are vertices. Therefore altogether there are t fewer
edges than vertices. Thus there are n —t edges.

32. Explain how a tree can be used to represent the table of
contents of a book organized into chapters, where each
chapter is organized into sections, and each section is or-
ganized into subsections.

32. The root of the tree represents the entire book. The vertices at level 1 represent the chapters—each chapter
is a chapter of (read “child of”) the book. The vertices at level 2 represent the sections (the parent of each

such vertex is the chapter in which the section resides). Similarly the vertices at level 3 are the subsections.




34. What does each of these represent in an organizational
tree?

a

R

the parent of a vertex
bh) a child of a vertex

C

ot

a sibling of a vertex
d) the ancestors of a vertex

¢) the descendants of a vertex

"’

f) the level of a vertex

g) the height of the tree

S

34. a) The parent of a vertex is that vertex’s boss.
b) The child of a vertex is an immediate suhordinate of that vertex (one he or she directly supervises).
¢) The sibling of a vertex is a coworker with the same boss.
d) The ancestors of a vertex are that vertex’s hoss, his/her boss’s hoss, etc.
e) The descendants of a vertex are all the people that that vertex ultimately supervises (directly or mdirectly).
f) The level of a vertex is the number of levels away from the top of the organization that vertex is.

g) The height of the tree is the depth of the structure.

35, Answer the same questions as those given in Exercise 34
for a rooted tree representing a computer file system.

35. a) The parent of a vertex v is the directory in which the file or directory represented by v is contained.
b) The child of a vertex v (and v must represent a directory) is a file or directory contained in the directory
that v represents.
c) If u and v are siblings, then the files or directories that u and v represent are in the same directory.
d) The ancestors of vertex v are all directories in the path from the root directory to the file or directory

represented by v.
e) The descendants of a vertex v are all the files and directories either contained in v, or contained in

directories contained in v, etc.
f) The level of a vertex v tells how far from the root directory is the file or directory represented by v.
g) The height of the tree is the greatest depth (i.e., level) at which a file or directory is buried in the system.




36. a) Draw the complete binary tree with 15 vertices that
represents a tree-connected network of 15 processors.

b) Show how 16 numbers can be added using the 15 pro-
cessors in part (a) using four steps.

36. a) We simply add one more row to the tree in Figure 12, obtaining the following tree.

R R R, B P, BB R

b) During the first step we use the hottom row of the network to add =y + x5, T3 + 14, x5 + 746, ...,
15 + 715. During the second step we use the next row up to add the results of the computations from the
first step, namely (x) + xa) + (ra + 74), (75 + 76) + (77 + 7)), ..., (713 + 714) + (715 + 716). The third
step uses the sums obtained in the second, and the two processors in the second row of the tree perform
(z1+ 72+ 73+ 74) + (25 + 76 + 77 +78) and (xg + >0 + 711 +T12) + (713 + 14 + 715 + T16) . Finally, during

the fourth step the root processor adds these two quantities to obtain the desired sum.

The eccentricity of a vertex in an unrooted tree is the length
of the longest simple path beginning at this vertex. A vertex is
called a center if no vertex in the tree has smaller eccentricity
than this vertex. In Exercises 39—41 find every vertex that is a
center in the given tree.

39. a

39. We need to compute the eccentricity of each vertex in order to find the center or centers. In practice, this does
not involve much computation, since we can tell at a glance when the eccentricity is large. Intuitively, the
center or centers are near the “middle” of the tree. The eccentricity of vertex e is 3, and it is the only vertex
with eccentricity this small. Indeed, vertices a and b have eccentricities 4 and 5 (look at the paths to 1);
vertices d, f, g, j, and k all have eccentricities at least 4 (again look at the paths to 1); and vertices e, h,
i, and ! also all have eccentricities at least 4 (look at the paths to k). Therefore ¢ is the only center.




40. The eccentricity of vertex e is 3, and it is the only vertex with eccentricity this small. Therefore e is the only

center.

2 m

41. See the comments for the solution to Exercise 39. The eccentricity of vertices ¢ and h are both 3. The
eccentricities of the other vertices are all at least 4. Therefore ¢ and h are the centers.

42. Show that a center should be chosen as the root to produce
a rooted tree of minimal height from an unrooted tree.

42, Since the height of a tree is the maximum distance from the root to another vertex, this is clear from the

definition of center.

*#43, Show that a tree has either one center or two centers that
are adjacent.

43. Certainly a tree has at least one center, since the set of eccentricities has a minimum value. First we prove
that if # and v are any two distinet centers (say with minimum eccentricity e), then u and v are adjacent.
Let P be the unique simple path from @ to v. We will show that P is just w,v. Il not, let ¢ be any other
vertex on P. Since the eccentricity of ¢ is at least e, there is a vertex w such that the unique simple path
Q@ from ¢ to w has length at least e. This path ¢ may follow P for awhile, but onee it diverges from P it
cannot rejoin P without there being a simple circuit in the tree. In any case, ) cannot follow P towards

both u and v, so suppose without loss of generality that it does not follow P towards u. Then the path from
u to ¢ and then on to w is simple and of length greater than e, a contradiction. Thus no such ¢ exists, and
u and v are adjacent.

Finally, to see that there can be no more than two centers, note that we have just proved that every two
centers are adjacent. If there were three (or more) centers, then we would have a K3 contained in the tree,
contradicting the definition that a tree has no simple circuits.



SECTION 11.3 Tree Traversal

Tree traversal is central to computer science applications. Trees are such a natural way to represent arithmetical
and algebraic formulae, and so easy to manipulate, that it would be difficult to imagine how computer scientists
could live without them. To see if you really understand the various orders, try Exercises 26 and 27. You need
to make your mind work recursively for tree traversals: when you come to a subtree, you need to remember
where fo continue after processing the subtree. It is best to think of these traversals in terms of the recursive
algorithms (shown as Algorithms 1, 2, and 3). A good bench-mark for testing your understanding of recursive
definitions is provided in Exercises 30-34.

In Exercises 1-3 construct the universal address system for the
given ordered rooted tree. Then use this to order its vertices
using the lexicographic order of their labels.

1.

1.

The root of the tree is labeled 0. The children of the root are labeled 1, 2, ..., from left to right. The
children of a vertex labeled o are labeled «.1, .2, ..., from left to right. For example, the two children
of the vertex 1 here are 1.1 and 1.2. We completely label the tree in this manner, from the top down. See
the fipure. The lexicographic order of the labels is the preorder of the vertices: after each vertex come the
subtrees rooted at its children, from left to right. Thus the orderis 0 <1 < 1.1 < 1.2 < 2 <« 3.

0

1.1 1.2

E\J



2. See the comments for the solution to Exercise 1. The order 1s 0 < 1 <« 1.1 < 1.1.1 <« 1.1.1.1 <« 1.1.1.2 <
1.1.2 < 1.2 < 2.

3. See the comments for the solution to Exercise 1. Theorderis 0 <1 < 1.1 < 1.2<121<1211<1212<
1.22 <123 <1231 <1.23.2<123.21<1.2322<1233<2<21.




4. Suppose that the address of the vertex v in the ordered
rooted tree T is 3.4.5.2.4.

a) At what level is v?
b) What is the address of the parent of v?

¢) What is the least number of siblings v can have?

d) What is the smallest possible number of vertices in T

if v has this address?

¢) Find the other addresses that must occur.

4.

a) The vertex is at level 5; it is clear that an address (other than 0) of length [ gives a vertex at level [.

b) We obtain the address of the parent by deleting the last number in the address of the vertex. Therefore
the parent i1s 3.4.5.2.

¢) Since v is the fourth child, it has at least three siblings.

d) We know that v’s parent must have at least 1 sibling, its grandparent must have at least 4, its great-
grandparent at least 3, and its great-great-grandparent at least 2. Adding to this count the fact that v has
5 ancestors and 3 siblings (and not forgetting to count v itself), we obtain a total of 19 vertices in the tree.
e) The other addresses are 0 together with all prefixes of v and the all the addresses that can be obtained
from v or prefixes of v by making the last number smaller. Thus we have 0, 1, 2, 3, 3.1, 3.2, 3.3, 3.4,
3.4.1, 342, 343, 344, 345, 34.5.1, 3452, 34521, 34522, and 3.4.5.2.3.

5. Suppose that the vertex with the largest address in an or-

dered rooted tree T has address 2.3.4.3.1. Is it possible to
determine the number of vertices in 77

5. The given information tells us that the root has two children. We have no way to tell how many vertices are
in the subtree of the root rooted at the first of these children. Therefore we have no way to tell how many
vertices are in the tree.

6. Can the leaves of an ordered rooted tree have the follow-

h)

c)

ing list of universal addresses? If so, construct such an

ordered rooted tree.

a) 1.1.1,1.1.2,1.2,2.1.1.1,2.1.2,2.1.3, 2.2, 3.1.1,
3.1.2.1,3.1.2.2,3.2

1.1,1.2.1,1.2.2,1.23,2.1,22.1,23.1, 232,
24.21,2422,3.1,32.1,322
1.1,1.2.1,1.2.2,1.22.1, 1.3, 14,2, 3.1, 3.2, 4.1.1.1



6. a) The following tree has these addresses for its leaves, We construct it by starting from the beginning of the
list and drawing the parts of the tree that are made necessary hy the given leaves., First of course there must
be a root. Then since the first leaf is labeled 1.1.1, there must be a first child of the root, a first child of this
child, and a first child of this latter child, which is then a leaf. Next there must be the second child of the
root’s first grandchild (1.1.2), and then a second child of the first child of the root (1.2). We continue in this

manner until the entire tree 1s drawn.

b) If there is such a tree, then the address 2.4.1 must occur since the address 2.4.2 does (the parent of
2.4.2.1). The vertex with that address must either be a leaf or have a descendant that is a leaf. The address
of any such leaf must begin 2.4.1. Since no such address is in the list, we conclude that the answer to the
question is no.

¢) No such tree is possible, since the vertex with address 1.2.2 is not a leaf (it has a child 1.2.2.1 in the list).

In Exercises 7-9 determine the order in which a preorder
traversal visits the vertices of the given ordered rooted tree.

1. a

7. In preorder, the root comes first, then the left subtree in preorder, then the right subtree in preorder. Thus the
preorder is a, followed by the vertices of the left subtree (the one rooted at b) in preorder, then ¢. Recursively,
the preorder in the subtree rooted at b is b, followed by d, followed by the vertices in the subtree rooted at
e in preorder, namely e, f. g. Putting this all together, we obtain the answer a,b,d,e, f,g,c.




8. See the comments in the solution to Exercise 7 for the procedure. The only difference here is that some vertices
have more than two children: after listing such a vertex, we list the vertices of its subtrees, in preorder, from

left to right. The answer is a,b,d, e, i, j,m,n,o,¢c, f,g. bk, p.

9. See the comments in the solution to Exercise 7 for the procedure. The only difference here is that some vertices
have more than two children: after listing such a vertex, we list the vertices of its subtrees, in preorder, from
left to right. The answer is a.b,e, k. I,m, f,g,n,r,s,¢c,d, h, 0,1, 7,p,q.

10. In which order are the vertices of the ordered rooted tree
in Exercise 7 visited using an inorder traversal?

10. The left subtree of the root comes first, namely the tree rooted at b. There again the left subtree comes first,
so the list begins with d. After that comes b, the root of this subtree, and then the right subtree of b, namely
(in order) f, e, and g. Then comes the root of the entire tree and finally its right child. Thus the answer is
d.b, f.e.qg,a,c.



11. In which order are the vertices of the ordered rooted tree
in Exercise 8 visited using an inorder traversal?

11. Inorder traversal requires that the left-most subtree be traversed first, then the root, then the remaining
subtrees (if any) from left to right. Applying this principle, we see that the list must start with the left subtree
in inorder. To find this, we need to start with ifs left subtree, namely d. Next comes the root of that subtree,
namely b, and then the right subtree in inorder. This is ¢, followed by the root e, followed by the subtree
rooted at j in inorder. This latter listing is m, j, n, 0. We continue in this manner, ultimately obtaining:
d, b i,e,m,j,n,00a, f,c,9. k. h,p, L.

12. In which order are the vertices of the ordered rooted tree
in Exercise 9 visited using an inorder traversal?

12. This is similar to Exercise 11. The answer i1s k, e, l,m.b, f,r,n,s,9.a,c,0, h,d,i,p, j,q.

13. In which order are the vertices of the ordered rooted tree
in Exercise 7 visited using a postorder traversal?

13. In postorder, the root comes last, following the left subtree in postorder and the right subtree in postorder.
Thus the postorder is the vertices of the left subtree (the one rooted at b) in postorder, then ¢, then a.
Recursively, the postorder in the subtree rooted at b is d, followed by the vertices in the subtree rooted at e
in postorder, namely f, g, e. followed by b. Putting this all together, we obtain the answer d, f,g,€,b,¢,a.

14. In which order are the vertices of the ordered rooted tree
in Exercise 8 visited using a postorder traversal?

14. The procedure is the same as in Exercise 13, except that some vertices have more than two children here:
before listing such a vertex, we list the vertices of its subtrees, in postorder, from left to right. The answer is

d,i,m,n,0 j,eb fg.kpl hca.




15. In which order are the vertices of the ordered rooted tree
in Exercise 9 visited using a postorder traversal?

15. This is just like Exercises 13 and 14. Note that all subtrees of a vertex are completed before listing that vertex.

The answer is k,{,m.e, f,r.,s,n,g.b,c,0,h,i,p,q,j.d,a.

16. a) Represent the expression ((x+2)+3)+
(y —(3+x)) — 5 using a binary tree.
Write this expression in
b) prefix notation.
¢) postfix notation.
d) infix notation.

16. a) We build the tree from the top down while analyzing the expression by identifying the outermost operation
at each stage. The outermost operation in this expression is the final subtraction. Therefore the tree has —
at its root, with the two operands as the subtrees at the root. The right operand is clearly 5, so the right
child of the root is 5. The left operand is the result of a multiplication, so the left subtree has * as its root.

We continue recursively in this way until the entire tree is constructed.

17. a) Represent the expressions (x +xv)+ (x/v) and
x 4+ ((xy 4+ x)/¥) using binary trees.
Write these expressions in
b) prefix notation.
¢) postfix notation.
d) infix notation.



17. a) For the first expression, we note that the outermost operation is the second addition. Therefore the root
of the tree is this plus sign, and the left and right subtrees are the trees for the expressions being added. The
first operand is the sum of = and xy, so the left subtree has a plus sign for its root and the tree for the
expressions z and xy as its subtrees. We continue in this manner until we have drawn the entire tree. The
second tree is done similarly. Note that the only difference between these two expressions is the placement of
parentheses, and yet the expressions represent quite different operations, as can be seen from the fact that the
trees are quite different.

/\

+

/ \ X Y
+ / / N

/ \ /N + Y

X * b y / \
/ \ * X
Xy /N

L

b) We can read off the answer from the picture we have just drawn simply by listing the vertices of the tree

in preorder: First list the root, then the left subtree in preorder, then the right subtree in preorder. Therefore

the answer is ++ =2y /ry. Similarly, the second expression in prefix notation is +z/+*zyzy.

¢) We can read off the answer from the picture we have just drawn simply by listing the vertices of the tree in

postorder: First list the left subtree in postorder, then the right subtree in postorder, then the root. Therefore
the answer is rxy*+2xy/+. Similarly, the second expression in postfix notation is rzy*z+y/ +.

d) The infix expression is just the given expression, fully parenthesized, with an explicit symbol for multipli-
cation. Thus the first is ((z + (z * y)) + (z/y)), and the second is (z + (((z *y) + z)/y)). This corresponds
to traversing the tree in inorder, putting in a left parenthesis whenever we go down to a left child and putting
in a right parenthesis whenever we come up from a right child.

19. a) Represent (AN B) —(AU(B — A)) using an or-
dered rooted tree.
Write this expression in
b) prefix notation.
¢) postfix notation.
d) infix notation.



19. This is similar to Exercise 17, with set operations rather than arithmetic ones.
a) We construct the tree in the same way we did there, noting, for example, that the first minus is the

n/_\u
A/ \B A/ N\
/N
B A

outermost operation.

b) The prefix expression is obtained by traversing the tree in preorder: —NABUA—-BA.
¢) The postfix expression is obtained by traversing the tree in postorder: ABNABA-U -.
d) This is already in fully parenthesized infix notation except for needing an outer set of parentheses: ((AN

B)—(Au(B - A))).

22, Draw the ordered rooted tree corresponding to each of
these arithmetic expressions written in prefix notation.
Then write each expression using infix notation.

a) +++—-53214
b) +4+23-51
c) #/93+%24-76

r

22. We work from the beginning of the expression. In part (a) the root of the tree is necessarily the first +. We
then use up as much of the rest of the expression as needed to construct the left subtree of the root. The
root of this left subtree is the %, and its left subtree 1s as much of the rest of the expression as 1s needed. We
continue in this way, making our way to the subtree consisting of root — and children 5 and 3. Then the 2
must be the right child of the second +, the 1 must be the right child of the *, and the 4 must be the right
child of the root. The result is shown here.

+
.;/ \4
RN
+ 1
SN,

AN
5 3

(a)

In infix form we have ((((5 —3) +2) = 1) +4). The other two trees are constructed in a similar manner.
r P
+/ '\\\_ \ / \
SN SN 9 3 s -
S ANAN
2 a4 7 B
(b) {c)

The infix expressions are therefore ((2+3) 1 (5 — 1)) and ((9/3) * ((2+4) + (7 — 6))), respectively.




23. What is the value of each of these prefix expressions?

a) —+2/843

b) + —+33%425 30
© +—132123/6-42

d) ++3+31+3+333

23. We show how to do these exercises by successively replacing the first occurrence of an operator immediately
followed by two operands with the result of that operation. (This is an alternative to the method suggested
in the text, where the last occurrence of an operator, which is necessarily preceded by two operands, is acted
upon first.) The final number is the value of the entire prefix expression. In part (a), for example, we first
replace / 8 4 by the result of dividing 8 by 4, namely 2, to obtain — * 2 2 3. Then we replace = 2 2 by the
result of multiplying 2 and 2, namely 4, to obtain the third line of our calculation. Next we replace — 4 3
by its answer, 1. which is the final answer.

a) - %2 /843
-%x223
—43
1

b) T —%33%425
1-904+425
1-985
115
1

c) +-132123/6—-42
+-9123/6—42
+—-98/6—42
+1/6-42
+1/62
+13
4

d) ++3+373+333
++34+31363
«+3+37293
x+ 37323
735 3
2205



24, What is the value of each of these postfix expressions?

a) 521 —-—-314++=
b) 93/54+72—=
¢) 322153 —-84/%—

24. We exhibit the answers by showing with parentheses the operation that is applied next, working from left to
right (it always imvolves the first occurrence of an operator symbol).
a) 5(21—)—-3144+x=(51—-)314++%=43(14+)+*=4(354)* = (48x%) = 32
b) (93/)564+T72—+=(35+)T2—+=8(7T2—)* = (85%) = 40
c) (32x)2753—-84/+— = (621)53—-84/+— = 36(53—)84/x— = 36 2(84/)x— = 36(22%)— =
(364-)=232

25, Construct the ordered rooted tree whose preorder traver-
salisa, b, f, ¢, g h, i, d, e, ], k. [, where a has four children,
¢ has three children, j has two children, b and e have one
child each, and all other vertices are leaves.

25. We slowly use the clues to fill in the details of this tree, shown below. Since the preorder starts with a, we
know that a is the root, and we are told that a has four children. Next, since the first child of a comes
immediately after @ in preorder, we know that this first child is b. We are told that b has one child, and it
must be f, which comes next in the preorder. We are told that f has no children, so we are now finished
with the subtree rooted at b. Therefore the second child of a must be ¢ (the next vertex in preorder). We
continue in this way until we have drawn the entire tree.

*26. Show that an ordered rooted tree is uniquely determined
when a list of vertices generated by a preorder traversal
of the tree and the number of children of each vertex are
specified.



26. We prove this by induction on the length of the list. If the list has just one element, then the statement is

trivially true. For the inductive step, consider the beginning of the list. There we find a sequence of vertices,
starting with the root and ending with the first leaf (we can recognize the first leaf as the first vertex with no
children), each vertex in the sequence being the first child of its predecessor in the list. Now remove this leaf,
and decrease the child count of its parent by 1. The result is the preorder and child counts of a tree with one
fewer vertex. By the inductive hypothesis we can uniquely determine this smaller tree. Then we can uniquely

determine where the deleted vertex goes, since it is the first child of its parent (whom we know).

*27

27,

Show that an ordered rooted tree is uniquely determined
when a list of vertices generated by a postorder traversal
of the tree and the number of children of each vertex are
specified.

We prove this by induction on the length of the list. If the list has just one element, then the statement is
trivially true. For the inductive step, consider the end of the list. There we find a sequence of vertices, starting
with the last leaf and ending with the root of the tree, each vertex being the last child of its successor in the
list. We know where this sequence starts, since we are told the number of children of each vertex: it starts at
the last leaf in the list. Now remove this leaf, and decrease the child count of its parent by 1. The result is
the postorder and child counts of a tree with one fewer vertex. By the inductive hypothesis we can uniquely
determine this smaller tree. Then we can uniquely determine where the deleted vertex goes, since it is the last
child of its parent (whom we know).

28.

Show that preorder traversals of the two ordered rooted
trees displayed below produce the same list of vertices.
Note that this does not contradict the statement in Ex-
ercise 26, because the numbers of children of internal
vertices in the two ordered rooted trees differ.

a




28. It is routine to see that the list is in alphabetical order in each case. In the first tree, vertex b has two children,

whereas in the second, vertex b has three children, so the statement in Exercise 26 1s not contradicted.

29, Show that postorder traversals of these two ordered rooted
trees produce the same list of vertices. Note that this does
not contradict the statement in Exercise 27, because the
numbers of children of internal vertices in the two ordered
rooted trees differ.

a i

c df g h c d by h

29. In each case the postorder is ¢, d, b, f, g, h,e,a.

Well-formed formulae in prefix notation over a set of sym-
bols and a set of binary operators are defined recursively by
these rules:
(i) if x is a symbol, then x is a well-formed formula in
prefix notation;
(if) if X and ¥ are well-formed formulae and #* is an
operator, then * XV is a well-formed formula.

30, Which of these are well-formed formulae over the sym-
bols {x, ¥, z} and the set of binary operators {x, +, o}?
a) x ++xyx
b) oxvxxz
C) XoXIXXXY
d) x +oxxoxxx

30. a) This is not well-formed by the result in Exercise 31.
b) This is not well-formed by the result in Exercise 31.
¢) This 1s not well-formed by the result in Exercise 31.
d) This is well-formed. Each of the two subexpressions orx is well-formed. Therefore the subexpression

+orzors is well-formed; eall it A. Thus the entire expression is xAx, so it is well-formed.




*31. Show that any well-formed formula in prefix notation
over aset of symbols and a set of binary operators contains
exactly one more symbol than the number of operators.

31. We prove this by induction on the recursive definition, in other words, on the length of the formula, i.e., the
total number of symbols and operators. The only formula of length 1 arises from the base case of the recursive
definition (part (2)), and in that case we have one symbol and no operators, so the statement is true. Assume

that the statement is true for formulae of length less than n > 1, and let F' be a formula of length n. Then
F arises from part (i) of the definition, so F' consists of * X Y, for some operator * and some formulae X
and Y. By the inductive hypothesis, the number of symbols in X exceeds the number of operators there
by 1, and the same holds for ¥". If we add and note that there is one more operator in ' than in X and Y
combined, then we see that the number of symbols in F' exceeds the number of operators in F by 1, as well.

32. Give a definition of well-formed formulae in postfix no-
tation over a set of symbols and a set of binary operators.

32. The definition is word-for-word the same as that given for prefix expressions, except that “posthx” is substi-

tuted for “prefix” throughout, and * XY is replaced by XV .

33. Give six examples of well-formed formulae with three or
more operators in postfix notation over the set of symbols
{x, v, z} and the set of operators {+, x, o}.

33. Any string of length n, using these six characters, is a well-formed formula as long as two conditions are
met: if we read the string from left to right, the number of symbols is always at least 1 greater than the
number of operators; and in all there is one more symbol than operator. We are asked to write down six such
strings, with n > 7. One such set is zazxx+++, zrxrxzx++++, co+axz++, zaze+zz++++,
zrr+axr+++,and zrt+rrr++ 4.

34. Extend the definition of well-formed formulae in prefix
notation to sets of symbols and operators where the op-
erators may not be binary.

34. We replace the inductive step (i) in the definition with the statement that if Xy, X5, ..., X, are well-formed

formulae and * is an n-ary operator, then *X; X5 ... X, is a well-formed formula.



