King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering Information and Computer Science Department

ICS 353-02: Design and Analysis of Algorithms Fall Semester 2018-2019 Quiz#1, Tuesday September 11th, 2018.

Name:

ID#:

1. (10 points) Using the definition of Big Ω (), show that $n^2 - 7n + 1$ is in $\Omega(n^2)$. To find c > 0 and $n_0 \in \mathbb{Z}^+$ such that $n^2 - 7n + 1 \ge cn^2 \quad \forall n \ge n_0$

Let $c = \frac{1}{2}$. We solve the inequality to find n_0 as follows:

$$n^{2} - 7n + 1 \ge \frac{n^{2}}{2} \Leftrightarrow \frac{n^{2}}{2} - 7n + 1 \ge 0$$
$$\Leftrightarrow n^{2} - 14n + 2 \ge 0$$

Solving the equation $n^2 - 14n + 2 = 0$, we get

$$n = \frac{14 \pm \sqrt{(-14)^2 - 4(1)(2)}}{2} = 7 \pm \frac{\sqrt{188}}{2}$$
$$= 7 \pm \sqrt{47}$$

Hence, for $c = \frac{1}{2}$, we can choose $n_0 = 14$ such that $n^2 - 7n + 1 \ge \frac{n^2}{2}$ $\forall n \ge 14$.

- 2. (6 points) Let *A* [1..40] = 13, 14, 15, ..., 51, 52. How many comparisons are performed by the binary search algorithm to search for
 - a. (3 points) the value 22
 - b. (3 points) the value 12

a.

 # comp.
 low
 high
 mid
 A[mid]

 1
 1
 40
 20
 32

 1
 1
 19
 10
 22

element comparisons = 2.

b.

x = 12

x = 22

# comp.	low	high	mid	A[mid]
1	1	40	20	32
1	1	19	10	22
1	1	9	5	17
1	1	4	2	14
1	1	1	1	13
	1	0		

element comparisons = 5.

3. (4 points) With respect to the Merge Algorithm that merges two sorted arrays of lengths n_1 and n_2 , respectively, what are the minimum number and maximum number of element comparisons? What are the minimum number and maximum number of element assignments?

	Minimum	Maximum
Element Comparisons	$\min\{n_1, n_2\}$	$n_1 + n_2 - 1$
Element Assignments	$2(n_1 + n_2)$	$2(n_1 + n_2)$